Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 103(1): 519-533, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30334088

ABSTRACT

Anaerobic digestion of nitrogen-rich substrate often causes process inhibition due to the susceptibility of the microbial community facing ammonia accumulation. However, the precise response of the microbial community has remained largely unknown. To explore the reasons, bacterial communities in ammonia-stressed reactors and control reactors were studied by amplicon pyrosequencing of 16S rRNA genes and the active methanogens were followed by terminal restriction fragment length polymorphism (T-RFLP) analyses of mcrA/mrtA gene transcripts. The results showed that the diversity of bacterial communities decreased in two parallel ammonia-inhibited reactors compared with two control reactors, but different levels of inhibitions coinciding with different community shifts were observed. In one reactor, the process was completely inhibited, which was preceded by a decreasing relative abundance of the phylum Firmicutes. Despite the same operating conditions, the process was stabilized in the parallel, partially inhibited reactor, in which the relative abundance of Firmicutes greatly increased. In particular, both ammonia-inhibited reactors lacked taxa assumed to be syntrophic bacteria (Thermoanaerobacteraceae, Syntrophomonadaceae, and Synergistaceae). Besides the predominance of the hydrogenotrophic methanogens Methanoculleus and Methanobacterium, activity of Methanosarcina and even of the strictly aceticlastic genus Methanosaeta were found to contribute at very high ammonia levels (> 9 g NH4-N L-1) in the stabilized reactor (partial inhibition). In contrast, the lack of aceticlastic activity in the parallel reactor might have led to acetate accumulation and thus process failure (complete inhibition). Collectively, ammonia was found to be a general inhibitor while accumulating acetate and thus acidification might be the key factor of complete process failure.


Subject(s)
Ammonia/metabolism , Biofuels , Bioreactors/microbiology , Microbial Consortia/physiology , Ammonia/pharmacology , Biodiversity , Methane/metabolism , Microbial Consortia/drug effects , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S , Real-Time Polymerase Chain Reaction
2.
Bioresour Technol ; 250: 683-690, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29220813

ABSTRACT

Hexachlorocyclohexane (HCH) production for pesticides was banned by Stockholm Convention (2009) due to its harmful and adverse effects on the environment. Despite this measure, many areas contaminated with former HCH production-waste products still require management. As a potential solution contributing to clean-up of these sites, anaerobic digestion (AD) of pesticide-contaminated biomass to produce biogas is a promising strategy. High pesticide concentrations, however, may inhibit biogas production. Therefore, laboratory-scale batch reactors were set up to investigate biogas reactor performance in presence of HCH. Inhibitory effects on biogas yield was observed with concentrations of HCH ≥ 150 mg/L. Carbon isotope composition of methane (δ13CCH4) showed significant fluctuation after an inhibition phase, indicating that HCH toxicity can affect the activity of acetoclastic methanogens. Furthermore, combined results of metabolites and carbon isotope fractionation factors (εc) demonstrated that α- and γ-HCH can be degraded to chlorobenzene and benzene via anaerobic reductive dechlorination.


Subject(s)
Biofuels , Hexachlorocyclohexane , Biomass , Biotransformation , Chemical Fractionation , Methane
3.
Bioresour Technol ; 245(Pt A): 35-43, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28892704

ABSTRACT

Anaerobic digestion of sugarcane straw co-digested with sugarcane filter cake was investigated with a special focus on macronutrients supplementation for an optimized conversion process. Experimental data from batch tests and a semi-continuous experiment operated in different supplementation phases were used for modeling the conversion kinetics based on continuous stirred-tank reactors. The semi-continuous experiment showed an overall decrease in the performance along the inoculum washout from the reactors. By supplementing nitrogen alone or in combination to phosphorus and sulfur the specific methane production significantly increased (P<0.05) by 17% and 44%, respectively. Although the two-pool one-step model has fitted well to the batch experimental data (R2>0.99), the use of the depicted kinetics did not provide a good estimation for process simulation of the semi-continuous process (in any supplementation phase), possibly due to the different feeding modes and inoculum source, activity and adaptation.


Subject(s)
Anaerobiosis , Saccharum , Bioreactors , Kinetics , Methane
4.
Biotechnol Biofuels ; 9: 144, 2016.
Article in English | MEDLINE | ID: mdl-27429647

ABSTRACT

BACKGROUND: During strategic planning of a biogas plant, the local availability of resources for start-up and operation should be taken into consideration for a cost-efficient process. Because most bioethanol/sugar industries in Brazil are located in remote areas, the use of fresh cattle manure from local farms could be a solution for the inoculation of the biogas process. This study investigated the diversity and dynamics of bacterial and archaeal communities and the performance of biogas reactors inoculated with manure and a mixed inoculum from different biogas reactors as for a controlled start-up until steady state. RESULTS: Laboratory-scale biogas reactors were fed semi-continuously with sugarcane filter cake alone (mono-digestion) or together with bagasse (co-digestion). At the initial start-up, the reactors inoculated with the mixed inoculum displayed a less diverse taxonomic composition, but with higher presence of significant abundances compared to reactors inoculated with manure. However, in the final steady state, the communities of the differently inoculated reactors were very similarly characterized by predominance of the methanogenic genera Methanosarcina and Methanobacterium, the bacterial families Bacteroidaceae, Prevotellaceae and Porphyromonadaceae (phylum Bacteroidetes) and Synergistaceae (phylum Synergistetes). In the mono-digestion reactors, the methanogenic communities varied greater than in the co-digestion reactors independently of the inoculation strategy. CONCLUSION: The microbial communities involved in the biogas production from waste products of the Brazilian bioethanol/sugar industry were relatively similar and stable at the reactor's steady phase independently of the inoculum source (manure or mixed inoculum). Therefore, the locally available manure can be used as inoculum for start-up of the biogas process, since it also contains the microbial resources needed. The strong fluctuation of methanogenic communities in mono-digestion reactors indicates higher risk of process instability than in co-digestion reactors.

5.
Bioresour Technol ; 217: 10-20, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26873284

ABSTRACT

In this study, the effects of nitrogen, phosphate and trace elements supplementation were investigated in a semi-continuously operated upflow anaerobic sludge blanket system to enhance process stability and biogas production from sugarcane vinasse. Phosphate in form of KH2PO4 induced volatile fatty acids accumulation possibly due to potassium inhibition of the methanogenesis. Although nitrogen in form of urea increased the reactor's alkalinity, the process was overloaded with an organic loading rate of 6.1gCODL(-1)d(-1) and a hydraulic retention time of 3.6days. However, by supplementing urea and trace elements a stable operation even at an organic loading rate of 9.6gCODL(-1)d(-1) and a hydraulic retention time of 2.5days was possible, resulting in 79% higher methane production rate with a stable specific methane production of 239mLgCOD(-1).


Subject(s)
Biofuels , Saccharum/chemistry , Urea/chemistry , Waste Disposal, Fluid/methods , Anaerobiosis , Biological Oxygen Demand Analysis , Bioreactors , Fatty Acids, Volatile/metabolism , Methane/biosynthesis , Nitrogen/metabolism , Phosphates/chemistry , Phosphates/metabolism , Potassium Compounds/chemistry , Potassium Compounds/metabolism , Saccharum/metabolism , Sewage , Trace Elements/chemistry , Trace Elements/metabolism , Urea/metabolism , Waste Disposal, Fluid/instrumentation
6.
Waste Manag ; 48: 199-208, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26584558

ABSTRACT

The anaerobic digestion of sugarcane filter cake and the option of co-digestion with bagasse were investigated in a semi-continuous feeding regime to assess the main parameters used for large-scale process designing. Moreover, fresh cattle manure was considered as alternative inoculum for the start-up of biogas reactors in cases where digestate from a biogas plant would not be available in remote rural areas. Experiments were carried out in 6 lab-scale semi-continuous stirred-tank reactors at mesophilic conditions (38±1°C) while the main anaerobic digestion process parameters monitored. Fresh cattle manure demonstrated to be appropriate for the start-up process. However, an acclimation period was required due to the high initial volatile fatty acids concentration (8.5gL(-1)). Regardless the mono-digestion of filter cake presented 50% higher biogas yield (480mLgVS(-1)) than co-digestion with bagasse (320mLgVS(-1)) during steady state conditions. A large-scale co-digestion system would produce 58% more biogas (1008m(3)h(-1)) than mono-digestion of filter cake (634m(3)h(-1)) due to its higher biomass availability for biogas conversion. Considering that the biogas production rate was the technical parameter that displayed the most relevant differences between the analyzed substrate options (0.99-1.45m(3)biogasm(3)d(-1)). The decision of which substrate option should be implemented in practice would be mainly driven by the available construction techniques, since economically efficient tanks could compensate the lower biogas production rate of co-digestion option.


Subject(s)
Biofuels , Cellulose , Manure , Refuse Disposal/methods , Saccharum , Anaerobiosis , Animals , Biomass , Bioreactors , Cattle , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Refuse Disposal/instrumentation
7.
Bioresour Technol ; 199: 235-244, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26278994

ABSTRACT

Different methods for optimization the anaerobic digestion (AD) of sugarcane filter cake (FC) with a special focus on volatile fatty acids (VFA) production were studied. Sodium hydroxide (NaOH) pretreatment at different concentrations was investigated in batch experiments and the cumulative methane yields fitted to a dual-pool two-step model to provide an initial assessment on AD. The effects of nitrogen supplementation in form of urea and NaOH pretreatment for improved VFA production were evaluated in a semi-continuously operated reactor as well. The results indicated that higher NaOH concentrations during pretreatment accelerated the AD process and increased methane production in batch experiments. Nitrogen supplementation resulted in a VFA loss due to methane formation by buffering the pH value at nearly neutral conditions (∼ 6.7). However, the alkaline pretreatment with 6g NaOH/100g FCFM improved both the COD solubilization and the VFA yield by 37%, mainly consisted by n-butyric and acetic acids.


Subject(s)
Fatty Acids, Volatile/biosynthesis , Filtration/instrumentation , Saccharum/chemistry , Sodium Hydroxide/pharmacology , Urea/pharmacology , Batch Cell Culture Techniques , Biofuels/analysis , Hydrolysis , Methane/biosynthesis , Nitric Acid/pharmacology , Principal Component Analysis , Saccharum/drug effects
8.
Int J Mol Sci ; 16(10): 23210-26, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26404240

ABSTRACT

The anaerobic digestion of filter cake and its co-digestion with bagasse, and the effect of gradual increase of the organic loading rate (OLR) from start-up to overload were investigated. Understanding the influence of environmental and technical parameters on the development of particular methanogenic pathway in the biogas process was an important aim for the prediction and prevention of process failure. The rapid accumulation of volatile organic acids at high OLR of 3.0 to 4.0 gvs·L⁻¹·day⁻¹ indicated strong process inhibition. Methanogenic community dynamics of the reactors was monitored by stable isotope composition of biogas and molecular biological analysis. A potential shift toward the aceticlastic methanogenesis was observed along with the OLR increase under stable reactor operating conditions. Reactor overloading and process failure were indicated by the tendency to return to a predominance of hydrogenotrophic methanogenesis with rising abundances of the orders Methanobacteriales and Methanomicrobiales and drop of the genus Methanosarcina abundance.


Subject(s)
Refuse Disposal/methods , Saccharum , Waste Products , Anaerobiosis , Bioreactors , Methanobacteriales/metabolism , Methanosarcina/metabolism
9.
Int J Mol Sci ; 16(9): 20685-703, 2015 Aug 31.
Article in English | MEDLINE | ID: mdl-26404248

ABSTRACT

Biogas production from sugarcane waste has large potential for energy generation, however, to enable the optimization of the anaerobic digestion (AD) process each substrate characteristic should be carefully evaluated. In this study, the kinetic challenges for biogas production from different types of sugarcane waste were assessed. Samples of vinasse, filter cake, bagasse, and straw were analyzed in terms of total and volatile solids, chemical oxygen demand, macronutrients, trace elements, and nutritional value. Biochemical methane potential assays were performed to evaluate the energy potential of the substrates according to different types of sugarcane plants. Methane yields varied considerably (5-181 Nm³·tonFM(-1)), mainly due to the different substrate characteristics and sugar and/or ethanol production processes. Therefore, for the optimization of AD on a large-scale, continuous stirred-tank reactor with long hydraulic retention times (>35 days) should be used for biogas production from bagasse and straw, coupled with pre-treatment process to enhance the degradation of the fibrous carbohydrates. Biomass immobilization systems are recommended in case vinasse is used as substrate, due to its low solid content, while filter cake could complement the biogas production from vinasse during the sugarcane offseason, providing a higher utilization of the biogas system during the entire year.


Subject(s)
Biofuels/analysis , Industrial Waste/analysis , Saccharum/chemistry , Anaerobiosis , Kinetics , Methane/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...