Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 136(6): 698-714, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32350520

ABSTRACT

Acute erythroleukemia (AEL or acute myeloid leukemia [AML]-M6) is a rare but aggressive hematologic malignancy. Previous studies showed that AEL leukemic cells often carry complex karyotypes and mutations in known AML-associated oncogenes. To better define the underlying molecular mechanisms driving the erythroid phenotype, we studied a series of 33 AEL samples representing 3 genetic AEL subgroups including TP53-mutated, epigenetic regulator-mutated (eg, DNMT3A, TET2, or IDH2), and undefined cases with low mutational burden. We established an erythroid vs myeloid transcriptome-based space in which, independently of the molecular subgroup, the majority of the AEL samples exhibited a unique mapping different from both non-M6 AML and myelodysplastic syndrome samples. Notably, >25% of AEL patients, including in the genetically undefined subgroup, showed aberrant expression of key transcriptional regulators, including SKI, ERG, and ETO2. Ectopic expression of these factors in murine erythroid progenitors blocked in vitro erythroid differentiation and led to immortalization associated with decreased chromatin accessibility at GATA1-binding sites and functional interference with GATA1 activity. In vivo models showed development of lethal erythroid, mixed erythroid/myeloid, or other malignancies depending on the cell population in which AEL-associated alterations were expressed. Collectively, our data indicate that AEL is a molecularly heterogeneous disease with an erythroid identity that results in part from the aberrant activity of key erythroid transcription factors in hematopoietic stem or progenitor cells.


Subject(s)
Leukemia, Erythroblastic, Acute/genetics , Neoplasm Proteins/physiology , Transcription Factors/physiology , Transcriptome , Adult , Animals , Cell Transformation, Neoplastic/genetics , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Dioxygenases , Erythroblasts/metabolism , Erythropoiesis/genetics , Female , GATA1 Transcription Factor/deficiency , GATA1 Transcription Factor/genetics , Gene Knock-In Techniques , Genetic Heterogeneity , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Middle Aged , Mutation , Neoplasm Proteins/genetics , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/physiology , RNA-Seq , Radiation Chimera , Repressor Proteins/genetics , Repressor Proteins/physiology , Transcription Factors/genetics , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/physiology , Exome Sequencing , Young Adult
2.
J Cell Mol Med ; 21(6): 1237-1242, 2017 06.
Article in English | MEDLINE | ID: mdl-27997762

ABSTRACT

Familial platelet disorder with predisposition to acute myeloid leukaemia (FPD/AML) is characterized by germline RUNX1 mutations, thrombocytopaenia, platelet dysfunction and a risk of developing acute myeloid and in rare cases lymphoid T leukaemia. Here, we focus on a case of a man with a familial history of RUNX1R174Q mutation who developed at the age of 42 years a T2-ALL and, 2 years after remission, an AML-M0. Both AML-M0 and T2-ALL blast populations demonstrated a loss of 1p36.32-23 and 17q11.2 regions as well as other small deletions, clonal rearrangements of both TCRγ and TCRδ and a presence of 18 variants at a frequency of more than 40%. Additional variants were identified only in T2-ALL or in AML-M0 evoking the existence of a common original clone, which gave rise to subclonal populations. Next generation sequencing (NGS) performed on peripheral blood-derived CD34+ cells 5 years prior to T2-ALL development revealed only the missense TET2P1962T mutation at a frequency of 1%, which increases to more than 40% in fully transformed leukaemic T2-ALL and AML-M0 clones. This result suggests that TET2P1962T mutation in association with germline RUNX1R174Q mutation leads to amplification of a haematopoietic clone susceptible to acquire other transforming alterations.


Subject(s)
Blood Platelet Disorders/genetics , Core Binding Factor Alpha 2 Subunit/genetics , DNA-Binding Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Proto-Oncogene Proteins/genetics , Adult , Antigens, CD34/genetics , Blood Platelet Disorders/complications , Blood Platelet Disorders/pathology , Blood Platelets/pathology , Dioxygenases , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myeloid, Acute/complications , Leukemia, Myeloid, Acute/pathology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...