Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotox Res ; 40(6): 2135-2147, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35997936

ABSTRACT

Studies showed that JM-20, a benzodiazepine-dihydropyridine hybrid molecule, protects against rotenone and 6-hydroxydopamine neurotoxicity. However, its protective effects against cytotoxicity induced by endogenous neurotoxins involved in Parkinson's disease (PD) pathogenesis have never been investigated. In this study, we evaluated the ability of JM-20 to inhibit alpha-synuclein (aSyn) aggregation. We also evaluated the interactions of JM-20 with aSyn by molecular docking and molecular dynamics and assessed the protective effect of JM-20 against aminochrome cytotoxicity. We demonstrated that JM-20 induced the formation of heterogeneous amyloid fibrils, which were innocuous to primary cultures of mesencephalic cells. Moreover, JM-20 reduced the average size of aSyn positive inclusions in H4 cells transfected with SynT wild-type and synphilin-1-V5, but not in HEK cells transfected with synphilin-1-GFP. In silico studies showed the interaction between JM-20 and the aSyn-binding site. Additionally, we showed that JM-20 protects SH-SY5Y cells against aminochrome cytotoxicity. These results reinforce the potential of JM-20 as a neuroprotective compound for PD and suggest aSyn as a molecular target for JM-20.


Subject(s)
Dihydropyridines , Neuroblastoma , Parkinson Disease , Humans , alpha-Synuclein , Benzodiazepines , Molecular Docking Simulation , Parkinson Disease/drug therapy
2.
Eur J Med Chem ; 123: 639-648, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27517809

ABSTRACT

Leishmania major, as other protozoan parasites, plague human kind since pre-historic times but it remains a worldwide ailment for which the therapeutic arsenal remains scarce. Although L. major is pteridine- and purine-auxotroph, well-established folate biosynthesis inhibitors, such as methotrexate, have poor effect over the parasite survival. The lack of efficiency is related to an alternative biochemical pathway in which pteridine reductase 1 (PTR1) plays a major role. For this reason, this enzyme has been considered a promising target for anti-leishmanial drug development and several inhibitors that share the substrate scaffold have been reported. In order to design a novel class of PTR1 inhibitors, we employed the thiazolidinone ring as a bioisosteric replacement for pteridine/purine ring. Among seven novel thiazolidine-2,4-dione derivatives reported herein, 2d was identified as the most promising lead by thermal shift assays (ΔTm = 11 °C, p = 0,01). Kinetic assays reveal that 2d has IC50 = 44.67 ± 1.74 µM and shows a noncompetitive behavior. This information guided docking studies and molecular dynamics simulations (50 000 ps) that supports 2d putative binding profile (H-bonding to Ser-111 and Leu-66) and shall be useful to design more potent inhibitors.


Subject(s)
Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Leishmania major/enzymology , Oxidoreductases/antagonists & inhibitors , Thiazolidinediones/chemistry , Thiazolidinediones/pharmacology , Models, Molecular , Oxidoreductases/chemistry , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...