Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J E Soft Matter ; 39(1): 3, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26794503

ABSTRACT

Water activity and its relationship with interactions stabilising lamellar stacks of mixed lipid bilayers in their fluid state are investigated by means of osmotic pressure measurements coupled with small-angle X-ray scattering. The (electrically neutral) bilayers are composed of a mixture in various proportions of lecithin, a zwitterionic phospholipid, and Simulsol, a non-ionic cosurfactant with an ethoxylated polar head. For highly dehydrated samples the osmotic pressure profile always exhibits the "classical" exponential decay as hydration increases but, depending on Simulsol to lecithin ratio, it becomes either of the "bound" or "unbound" types for more water-swollen systems. A simple thermodynamic model is used for interpreting the results without resorting to the celebrated but elusive "hydration forces".


Subject(s)
Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Thermodynamics , Osmotic Pressure , Surface-Active Agents/chemistry , Water/chemistry
2.
Eur Phys J E Soft Matter ; 38(7): 78, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26174430

ABSTRACT

Structure and interactions stabilising the lamellar stack of mixed lipid bilayers in their fluid state are investigated by means of small-angle X-ray scattering. The (electrically neutral) bilayers are composed of a mixtures of lecithin, a zwitterionic phospholipid, and Simulsol, a non-ionic cosurfactant with an ethoxylated polar head. The soft confinement of the bilayer hydrophilic components is varied by changing hydration and bilayer composition, as well as the length of the cosurfactant polar head. Structural transitions are observed at low hydration, in the stacking order for the longer cosurfactant, and in the mixed bilayers for the shorter one. At higher hydration, the swelling of the lamellar stacks occurs with a significant, but continuous evolution in the mixed bilayer structure. The bilayer structural changes are discussed in analogy with the so-called "brush-to-mushroom" transition induced by lateral confinement, relevant for long linear polymers grafted onto rigid surfaces, taking also into account the role of vertical confinement.

SELECTION OF CITATIONS
SEARCH DETAIL
...