Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37512804

ABSTRACT

Localized cutaneous leishmaniasis caused by Leishmania braziliensis can either respond well or poorly to the treatment or heal spontaneously; It seems to be dependent on the parasite and/or host factors, but the mechanisms are not fully understood. We evaluated the in situ immune response in eighty-two active lesions from fifty-eight patients prior to treatment classified as early spontaneous regression (SRL-n = 14); treatment responders (GRL-n = 20); and non-responders (before first treatment/relapse, PRL1/PRL2-n = 24 each). Immunohistochemistry was used to identify cell/functional markers which were correlated with the clinical characteristics. PRL showed significant differences in lesion number/size, clinical evolution, and positive parasitological examinations when compared with the other groups. SRL presented a more efficient immune response than GRL and PRL, with higher IFN-γ/NOS2 and a lower percentage of macrophages, neutrophils, NK, B cells, and Ki-67+ cells. Compared to SRL, PRL had fewer CD4+ Tcells and more CD163+ macrophages. PRL1 had more CD68+ macrophages and Ki-67+ cells but less IFN-γ than GRL. PRL present a less efficient immune profile, which could explain the poor treatment response, while SRL had a more balanced immune response profile for lesion healing. Altogether, these evaluations suggest a differentiated profile of the organization of the inflammatory process for lesions of different tegumentary leishmaniasis evolution.

2.
Cells ; 10(8)2021 07 26.
Article in English | MEDLINE | ID: mdl-34440659

ABSTRACT

The first formal description of the microbicidal activity of extracellular traps (ETs) containing DNA occurred in neutrophils in 2004. Since then, ETs have been identified in different populations of cells involved in both innate and adaptive immune responses. Much of the knowledge has been obtained from in vitro or ex vivo studies; however, in vivo evaluations in experimental models and human biological materials have corroborated some of the results obtained. Two types of ETs have been described-suicidal and vital ETs, with or without the death of the producer cell. The studies showed that the same cell type may have more than one ETs formation mechanism and that different cells may have similar ETs formation mechanisms. ETs can act by controlling or promoting the mechanisms involved in the development and evolution of various infectious and non-infectious diseases, such as autoimmune, cardiovascular, thrombotic, and neoplastic diseases, among others. This review discusses the presence of ETs in neutrophils, macrophages, mast cells, eosinophils, basophils, plasmacytoid dendritic cells, and recent evidence of the presence of ETs in B lymphocytes, CD4+ T lymphocytes, and CD8+ T lymphocytes. Moreover, due to recently collected information, the effect of ETs on COVID-19 is also discussed.


Subject(s)
Extracellular Traps/immunology , Animals , Basophils/immunology , COVID-19 , Eosinophils/immunology , Humans , Lymphocytes/immunology , Macrophages/immunology , Mast Cells/immunology , Neutrophils/immunology
3.
Front Microbiol ; 9: 1308, 2018.
Article in English | MEDLINE | ID: mdl-29971054

ABSTRACT

Leishmaniasis is a vector-borne infectious disease caused by different species of protozoa from the Leishmania genus. Classically, the disease can be classified into two main clinical forms: Visceral (VL) and Tegumentary (TL) leishmaniasis. TL is a skin/mucosal granulomatous disease that manifests mainly as cutaneous localized or disseminated ulcers, papules diffusely distributed, mucosal lesions or atypical lesions. Once the etiology of the infection is confirmed, treatment can take place, and different drugs can be administered. It has already been shown that, even when the scar is clinically evident, inflammation is still present in the native tissue, and the decrease of the inflammatory process occurs slowly during the 1st years after clinical healing. The maintenance of residual parasites in the scar tissue is also well documented. Therefore, it is no longer a surprise that, under some circumstances, therapeutic failure and/or lesion reactivation occurs. All over the years, an impressive amount of data on relapses, treatment resistance and lesion reactivation after healing has been collected, and several factors have been pointed out as having a role in the process. Different factors such as Leishmania species, parasite variability, Leishmania RNA virus 1, parasite load, parasite persistence, age, nutritional status, gender, co-morbidities, co-infection, pregnancy, immunosuppression, lesion duration, number and localization of lesions, drug metabolism, irregular treatment and individual host cellular immune response were described and discussed in the present review. Unfortunately, despite this amount of information, a conclusive understanding remains under construction. In addition, multifactorial influence cannot be discarded. In this context, knowing why leishmaniasis has been difficult to treat and control can help the development of new approaches, such as drugs and immunotherapy in order to improve healing maintenance. In this sense, we would like to highlight some of the findings that may influence the course of Leishmania infection and the therapeutic response, with an emphasis on TL.

SELECTION OF CITATIONS
SEARCH DETAIL
...