Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Space Res (Amst) ; 39: 76-85, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945092

ABSTRACT

We report the results of the first six years of measurements of so-called fast neutrons on the International Space Station (ISS) with the Radiation Assessment Detector (ISS-RAD), spanning the period from February 2016 to February 2022. ISS-RAD combines two sensor heads, one nearly identical to the single sensor head in the Mars Science Laboratory RAD (MSL-RAD). The latter is described in a companion article to this one. The novel sensor is the FND, or fast neutron detector, designed to measure neutrons with energies in the range from 200 keV to about 8 MeV. ISS-RAD was deployed in February 2016 in the USLAB module, and then served as a survey instrument from March 2017 until May 2020. Data were acquired in Node3, the Japanese Pressurized Module, Columbus, and Node2. At the conclusion of the survey portion of RAD's planned 10-year campaign on ISS, the instrument was stationed in the USLAB; current plans call for it to remain there indefinitely. The radiation environment on the ISS consists of a complex mix of charged and neutral particles that varies on short time scales owing to the Station's orbit. Neutral particles, and neutrons in particular, are of concern from a radiation protection viewpoint, because they are both highly penetrating (since they do not lose energy via direct ionization) and, at some energies, have high biological effectiveness. Neutrons are copiously produced by GCRs and other incident energetic particles when they undergo nuclear interactions in shielding. As different ISS modules have varying amounts of shielding, they also have varying neutron environments. We report results for neutron fluences and dose equivalent rates in various positions in the ISS.


Subject(s)
Cosmic Radiation , Radiation Monitoring , Space Flight , Spacecraft , Fast Neutrons , Radiation Monitoring/methods , Neutrons , Radiation Dosage
2.
Phys Rev Lett ; 111(6): 062002, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23971562

ABSTRACT

Measurements of inclusive differential cross sections for charged pion and kaon production in e+ e- annihilation have been carried out at a center-of-mass energy of sqrt[s]=10.52 GeV. The measurements were performed with the Belle detector at the KEKB e+ e- collider using a data sample containing 113×10(6) e+ e- → qq events, where q={u,d,s,c}. We present charge-integrated differential cross sections dσ(h±)/dz for h±={π±,K±} as a function of the relative hadron energy z=2E(h)/sqrt[s] from 0.2 to 0.98. The combined statistical and systematic uncertainties for π± (K±) are 4% (4%) at z∼0.6 and 15% (24%) at z∼0.9. The cross sections are the first measurements of the z dependence of pion and kaon production for z>0.7 as well as the first precision cross section measurements at a center-of-mass energy far below the Z0 resonance used by the experiments at LEP and SLC.

3.
Phys Rev Lett ; 107(7): 072004, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21902387

ABSTRACT

The interference fragmentation function translates the fragmentation of a quark with a transverse projection of the spin into an azimuthal asymmetry of two final-state hadrons. In e(+)e(-) annihilation the product of two interference fragmentation functions is measured. We report nonzero asymmetries for pairs of charge-ordered π(+)π(-) pairs, which indicate a significant interference fragmentation function in this channel. The results are obtained from a 672 fb(-1) data sample that contains 711 × 10(6) π(+)π(-) pairs and was collected at and near the Υ(4S) resonance, with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider.

SELECTION OF CITATIONS
SEARCH DETAIL
...