Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 88(22): 11100-11107, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27767294

ABSTRACT

We present a dynamically adjustable nanofluidic platform for formatting the conformations of and visualizing the interaction kinetics between biomolecules in solution, offering new time resolution and control of the reaction processes. This platform extends convex lens-induced confinement (CLiC), a technique for imaging molecules under confinement, by introducing a system for in situ modification of the chemical environment; this system uses a deep microchannel to diffusively exchange reagents within the nanoscale imaging region, whose height is fixed by a nanopost array. To illustrate, we visualize and manipulate salt-induced, surfactant-induced, and enzyme-induced reactions between small-molecule reagents and DNA molecules, where the conformations of the DNA molecules are formatted by the imposed nanoscale confinement. In response to dynamically modifying the local salt concentration, we report two salt-induced transitions in DNA molecules which occur on separate time scales: a rapid change in polymer extension due to modified local ionic screening and a gradual change in polymer brightness, reflecting release of intercalated YOYO-1 dye. Our time-resolved measurements provide new insights into the influence of YOYO-1 dye on polymer stiffness. In response to introducing cationic surfactants in solution, we temporally resolve single-molecule compaction trajectories of DNA polymers, guided by the confining nanogroove environment; this is in contrast to the uncontrolled collapse which would occur in free solution under similar conditions. In the presence of restriction enzymes, we directly visualize the cleavage of multiple DNA sites under adjustable nanoscale confinement. By using nanofabricated, nonabsorbing, low-background glass walls to confine biomolecules, our nanofluidic platform facilitates quantitative exploration of physiologically and biotechnologically relevant processes at the nanoscale. This device provides new kinetic information about dynamic chemical processes at the single-molecule level, using advancements in the CLiC design including a microchannel-based diffuser and postarray-based dialysis slit.

2.
Rev Sci Instrum ; 86(3): 033701, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25832232

ABSTRACT

We present the design and construction of a versatile, open frame inverted microscope system for wide-field fluorescence and single molecule imaging. The microscope chassis and modular design allow for customization, expansion, and experimental flexibility. We present two components which are included with the microscope which extend its basic capabilities and together create a powerful microscopy system: A Convex Lens-induced Confinement device provides the system with single-molecule imaging capabilities, and a two-color imaging system provides the option of imaging multiple molecular species simultaneously. The flexibility of the open-framed chassis combined with accessible single-molecule, multi-species imaging technology supports a wide range of new measurements in the health, nanotechnology, and materials science research sectors.


Subject(s)
Microscopy/instrumentation , Molecular Imaging/instrumentation , Optical Imaging/instrumentation , Bacteriophage lambda/genetics , DNA, Viral/chemistry , Diffusion , Equipment Design , Fluorescence Resonance Energy Transfer/instrumentation , Fluorescent Dyes , Lasers , Oligonucleotides/chemistry , Photobleaching , Polyethylene Glycols , Solutions , Streptavidin/chemistry
3.
Proc Natl Acad Sci U S A ; 111(37): 13295-300, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25092333

ABSTRACT

We demonstrate a new platform, convex lens-induced nanoscale templating (CLINT), for dynamic manipulation and trapping of single DNA molecules. In the CLINT technique, the curved surface of a convex lens is used to deform a flexible coverslip above a substrate containing embedded nanotopography, creating a nanoscale gap that can be adjusted during an experiment to confine molecules within the embedded nanostructures. Critically, CLINT has the capability of transforming a macroscale flow cell into a nanofluidic device without the need for permanent direct bonding, thus simplifying sample loading, providing greater accessibility of the surface for functionalization, and enabling dynamic manipulation of confinement during device operation. Moreover, as DNA molecules present in the gap are driven into the embedded topography from above, CLINT eliminates the need for the high pressures or electric fields required to load DNA into direct-bonded nanofluidic devices. To demonstrate the versatility of CLINT, we confine DNA to nanogroove and nanopit structures, demonstrating DNA nanochannel-based stretching, denaturation mapping, and partitioning/trapping of single molecules in multiple embedded cavities. In particular, using ionic strengths that are in line with typical biological buffers, we have successfully extended DNA in sub-30-nm nanochannels, achieving high stretching (90%) that is in good agreement with Odijk deflection theory, and we have mapped genomic features using denaturation analysis.


Subject(s)
Lenses , Nanostructures/chemistry , Nanotechnology/methods , DNA/chemistry , Imaging, Three-Dimensional , Nucleic Acid Denaturation
4.
Rev Sci Instrum ; 84(10): 103704, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24182116

ABSTRACT

We present the conception, fabrication, and demonstration of a versatile, computer-controlled microscopy device which transforms a standard inverted fluorescence microscope into a precision single-molecule imaging station. The device uses the principle of convex lens-induced confinement [S. R. Leslie, A. P. Fields, and A. E. Cohen, Anal. Chem. 82, 6224 (2010)], which employs a tunable imaging chamber to enhance background rejection and extend diffusion-limited observation periods. Using nanopositioning stages, this device achieves repeatable and dynamic control over the geometry of the sample chamber on scales as small as the size of individual molecules, enabling regulation of their configurations and dynamics. Using microfluidics, this device enables serial insertion as well as sample recovery, facilitating temporally controlled, high-throughput measurements of multiple reagents. We report on the simulation and experimental characterization of this tunable chamber geometry, and its influence upon the diffusion and conformations of DNA molecules over extended observation periods. This new microscopy platform has the potential to capture, probe, and influence the configurations of single molecules, with dramatically improved imaging conditions in comparison to existing technologies. These capabilities are of immediate interest to a wide range of research and industry sectors in biotechnology, biophysics, materials, and chemistry.


Subject(s)
Lenses , Microscopy/instrumentation , Bacteriophage lambda , DNA, Viral/metabolism , Diffusion , Equipment Design , Models, Theoretical
5.
Opt Express ; 21(1): 1189-202, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23389011

ABSTRACT

Resolving single fluorescent molecules in the presence of high fluorophore concentrations remains a challenge in single-molecule biophysics that limits our understanding of weak molecular interactions. Total internal reflection fluorescence (TIRF) imaging, the workhorse of single-molecule fluorescence microscopy, enables experiments at concentrations up to about 100 nM, but many biological interactions have considerably weaker affinities, and thus require at least one species to be at micromolar or higher concentration. Current alternatives to TIRF often require three-dimensional confinement, and thus can be problematic for extended substrates, such as cytoskeletal filaments. To address this challenge, we have demonstrated and applied two new single-molecule fluorescence microscopy techniques, linear zero-mode waveguides (ZMWs) and convex lens induced confinement (CLIC), for imaging the processive motion of molecular motors myosin V and VI along actin filaments. Both technologies will allow imaging in the presence of higher fluorophore concentrations than TIRF microscopy. They will enable new biophysical measurements of a wide range of processive molecular motors that move along filamentous tracks, such as other myosins, dynein, and kinesin. A particularly salient application of these technologies will be to examine chemomechanical coupling by directly imaging fluorescent nucleotide molecules interacting with processive motors as they traverse their actin or microtubule tracks.


Subject(s)
Biophysics/methods , Lenses , Microscopy, Fluorescence/methods , Microscopy/instrumentation , Myosins/chemistry , Optical Imaging/methods , Actins/chemistry , Adenosine Triphosphate/chemistry , Animals , Computer Simulation , Cytoskeleton/metabolism , Dyneins/chemistry , Equipment Design , Insecta , Kinesins/chemistry , Microscopy/methods , Microtubules/chemistry , Physics/methods
6.
Proc Natl Acad Sci U S A ; 109(41): 16552-7, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-23012405

ABSTRACT

Proper timing of gene expression requires that transcription factors (TFs) efficiently locate and bind their target sites within a genome. Theoretical studies have long proposed that one-dimensional sliding along DNA while simultaneously reading its sequence can accelerate TF's location of target sites. Sliding by prokaryotic and eukaryotic TFs were subsequently observed. More recent theoretical investigations have argued that simultaneous reading and sliding is not possible for TFs without their possessing at least two DNA-binding modes. The tumor suppressor p53 has been shown to slide on DNA, and recent experiments have offered structural and single molecule support for a two-mode model for the protein. If the model is applicable to p53, then the requirement that TFs be able to read while sliding implies that noncognate sites will affect p53's mobility on DNA, which will thus be generally sequence-dependent. Here, we confirm this prediction with single-molecule microscopy measurements of p53's local diffusivity on noncognate DNA. We show how a two-mode model accurately predicts the variation in local diffusivity, while a single-mode model does not. We further determine that the best model of sequence-specific binding energy includes terms for "hemi-specific" binding, with one dimer of tetrameric p53 binding specifically to a half-site and the other binding nonspecifically to noncognate DNA. Our work provides evidence that the recognition by p53 of its targets and the timing thereof can depend on its noncognate binding properties and its ability to change between multiple modes of binding, in addition to the much better-studied effects of cognate-site binding.


Subject(s)
DNA/genetics , DNA/metabolism , Transcription Factors/metabolism , Tumor Suppressor Protein p53/metabolism , Algorithms , Animals , Base Sequence , Binding Sites/genetics , DNA/chemistry , Gene Expression Regulation , Humans , Kinetics , Models, Genetic , Nucleic Acid Conformation , Nucleotide Motifs/genetics , Protein Binding , Protein Multimerization , Transcription Factors/chemistry , Tumor Suppressor Protein p53/chemistry
7.
Biophys J ; 95(1): L01-3, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18424488

ABSTRACT

The p53 protein, a transcription factor of key importance in tumorigenesis, is suggested to diffuse one-dimensionally along DNA via its C-terminal domain, a process that is proposed to regulate gene activation both positively and negatively. There has been no direct observation of p53 moving along DNA, however, and little is known about the mechanism and rate of its translocation. Here, we use single-molecule techniques to visualize, in real time, the one-dimensional diffusion of p53 along DNA. The one-dimensional diffusion coefficient is measured to be close to the theoretical limit, indicative of movement along a free energy landscape with low activation barriers. We further investigate the mechanism of translocation and determine that p53 is capable of sliding--moving along DNA while in continuous contact with the duplex, rather than through a series of hops between nearby bases.


Subject(s)
DNA/chemistry , DNA/physiology , Models, Biological , Models, Chemical , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/physiology , Computer Simulation , DNA/ultrastructure , Friction , Motion , Tumor Suppressor Protein p53/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...