Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445987

ABSTRACT

Tau protein aggregations are important contributors to the etiology of Alzheimer's disease (AD). Hydromethylthionine (HMT) is a potent inhibitor of tau aggregation in vitro and in vivo and is being developed as a possible anti-dementia medication. HMT was also shown to affect the cholinergic system and to interact with mitochondria. Here, we used tau-transgenic (L1 and L66) and wild-type NMRI mice that were treated with HMT, rivastigmine and memantine and with combinations thereof, for 2-4 weeks. We measured HMT concentrations in both brain homogenates and isolated mitochondria and concentrations of glucose, lactate and pyruvate in brain by microdialysis. In isolated brain mitochondria, we recorded oxygen consumption of mitochondrial complexes by respirometry. While rivastigmine and memantine lowered mitochondrial respiration, HMT did not affect respiration in wild-type animals and increased respiration in tau-transgenic L1 mice. Glucose and lactate levels were not affected by HMT administration. The presence of HMT in isolated mitochondria was established. In summary, traditional anti-dementia drugs impair mitochondrial function while HMT has no adverse effects on mitochondrial respiration in tau-transgenic mice. These results support the further development of HMT as an anti-dementia drug.


Subject(s)
Alzheimer Disease , Memantine , Mice , Animals , Rivastigmine/pharmacology , Memantine/pharmacology , Memantine/therapeutic use , tau Proteins/genetics , tau Proteins/metabolism , Mice, Transgenic , Cholinesterase Inhibitors/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/chemically induced , Mitochondria/metabolism
2.
Biomedicines ; 10(4)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35453617

ABSTRACT

The tau protein aggregation inhibitor hydromethylthionine mesylate (HMTM) was shown recently to have concentration-dependent pharmacological activity in delaying cognitive decline and brain atrophy in phase 3 Alzheimer's disease (AD) clinical trials; the activity was reduced in patients receiving symptomatic therapies. The methylthionine (MT) moiety has been reported to increase the clearance of pathological tau and to enhance mitochondrial activity, which is impaired in AD patients. In line 1 (L1) mice (a model of AD), HMTM (5/15 mg/kg) was administered either as a monotherapy or as an add-on to a chronic administration with the cholinesterase inhibitor rivastigmine (0.1/0.5 mg/kg) to explore mitochondrial function and energy substrate utilization as potential targets of drug interference. Compared with wild-type NMRI mice, the L1 mice accumulated greater levels of l-lactate and of the LDH-A subunit responsible for the conversion of pyruvate into l-lactate. In contrast, the levels of LDH-B and mitochondrial ETC subunits and the activity of complexes I and IV was not altered in the L1 mice. The activity of complex I and complex IV tended to increase with the HMTM dosing, in turn decreasing l-lactate accumulation in the brains of the L1 mice, despite increasing the levels of LDH-A. The chronic pre-dosing of the L1 mice with rivastigmine partially prevented the enhancement of the activity of complexes I and IV by HMTM and the increase in the levels of LDH-A while further reducing the levels of l-lactate. Thus, HMTM in combination with rivastigmine leads to a depletion in the energy substrate l-lactate, despite bioenergetic production not being favoured. In this study, the changes in l-lactate appear to be regulated by LDH-A, since neither of the experimental conditions affected the levels of LDH-B. The data show that HMTM monotherapy facilitates the use of substrates for energy production, particularly l-lactate, which is provided by astrocytes, additionally demonstrating that a chronic pre-treatment with rivastigmine prevented most of the HMTM-associated effects.

3.
Front Mol Neurosci ; 10: 447, 2017.
Article in English | MEDLINE | ID: mdl-29375308

ABSTRACT

α-Synuclein (α-Syn) aggregation is a pathological feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease (PD). We have tested whether N,N,N',N'-tetramethyl-10H-phenothiazine-3,7-diaminium bis(hydromethanesulfonate) (leuco-methylthioninium bis(hydromethanesulfonate); LMTM), a tau aggregation inhibitor, affects α-Syn aggregation in vitro and in vivo. Both cellular and transgenic models in which the expression of full-length human α-Syn (h-α-Syn) fused with a signal sequence peptide to promote α-Syn aggregation were used. Aggregated α-Syn was observed following differentiation of N1E-115 neuroblastoma cells transfected with h-α-Syn. The appearance of aggregated α-Syn was inhibited by LMTM, with an EC50 of 1.1 µM, with minimal effect on h-α-Syn mRNA levels being observed. Two independent lines of mice (L58 and L62) transgenic for the same fusion protein accumulated neuronal h-α-Syn that, with aging, developed into fibrillary inclusions characterized by both resistance to proteinase K (PK)-cleavage and their ability to bind thiazin red. There was a significant decrease in α-Syn-positive neurons in multiple brain regions following oral treatment of male and female mice with LMTM administered daily for 6 weeks at 5 and 15 mg MT/kg. The early aggregates of α-Syn and the late-stage fibrillar inclusions were both susceptible to inhibition by LMTM, a treatment that also resulted in the rescue of movement and anxiety-related traits in these mice. The results suggest that LMTM may provide a potential disease modification therapy in PD and other synucleinopathies through the inhibition of α-Syn aggregation.

SELECTION OF CITATIONS
SEARCH DETAIL
...