Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Mol Med ; 28(1): 44, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35468719

ABSTRACT

BACKGROUND: Menopausal hormone therapy (MHT) is recommended for only five years to treat vasomotor symptoms and vulvovaginal atrophy because of safety concerns with long-term treatment. We investigated the ability of 2',3',4'-trihydroxychalcone (2',3',4'-THC) to modulate estrogen receptor (ER)-mediated responses in order to find drug candidates that could potentially prevent the adverse effects of long-term MHT treatment. METHODS: Transfection assays, real time-polymerase chain reaction, and microarrays were used to evaluate the effects of 2',3',4'-THC on gene regulation. Radioligand binding studies were used to determine if 2',3',4'-THC binds to ERα. Cell proliferation was examined in MCF-7 breast cancer cells by using growth curves and flow cytometry. Western blots were used to determine if 2',3',4'-THC alters the E2 activation of the MAPK pathway and degradation of ERα. Chromatin immunoprecipitation was used to measure ERα binding to genes. RESULTS: The 2',3',4'-THC/E2 combination produced a synergistic activation with ERα on reporter and endogenous genes in human U2OS osteosarcoma cells. Microarrays identified 824 genes that we termed reprogrammed genes because they were not regulated in U2OS-ERα cells unless they were treated with 2',3',4'-THC and E2 at the same time. 2',3',4'-THC blocked the proliferation of MCF-7 cells by preventing the E2-induced activation of MAPK and c-MYC transcription. The antiproliferative mechanism of 2',3',4'-THC differs from selective estrogen receptor modulators (SERMs) because 2',3',4'-THC did not bind to the E2 binding site in ERα like SERMs. CONCLUSION: Our study suggests that 2',3',4'-THC may represent a new class of ERα modulators that do not act as a direct agonists or antagonists. We consider 2',3',4'-THC to be a reprogramming compound, since it alters the activity of ERα on gene regulation and cell proliferation without competing with E2 for binding to ERα. The addition of a reprogramming drug to estrogens in MHT may offer a new strategy to overcome the adverse proliferative effects of estrogen in MHT by reprogramming ERα as opposed to an antagonist mechanism that involves blocking the binding of estrogen to ERα.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Proliferation , Estradiol/metabolism , Estradiol/pharmacology , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens/pharmacology , Selective Estrogen Receptor Modulators/metabolism , Selective Estrogen Receptor Modulators/pharmacology
2.
Environ Health Perspect ; 124(5): 563-9, 2016 05.
Article in English | MEDLINE | ID: mdl-26502914

ABSTRACT

BACKGROUND: Xenoestrogens are synthetic compounds that mimic endogenous estrogens by binding to and activating estrogen receptors. Exposure to estrogens and to some xenoestrogens has been associated with cell proliferation and an increased risk of breast cancer. Despite evidence of estrogenicity, parabens are among the most widely used xenoestrogens in cosmetics and personal-care products and are generally considered safe. However, previous cell-based studies with parabens do not take into account the signaling cross-talk between estrogen receptor α (ERα) and the human epidermal growth factor receptor (HER) family. OBJECTIVES: We investigated the hypothesis that the potency of parabens can be increased with HER ligands, such as heregulin (HRG). METHODS: The effects of HER ligands on paraben activation of c-Myc expression and cell proliferation were determined by real-time polymerase chain reaction, Western blots, flow cytometry, and chromatin immunoprecipitation assays in ERα- and HER2-positive human BT-474 breast cancer cells. RESULTS: Butylparaben (BP) and HRG produced a synergistic increase in c-Myc mRNA and protein levels in BT-474 cells. Estrogen receptor antagonists blocked the synergistic increase in c-Myc protein levels. The combination of BP and HRG also stimulated proliferation of BT-474 cells compared with the effects of BP alone. HRG decreased the dose required for BP-mediated stimulation of c-Myc mRNA expression and cell proliferation. HRG caused the phosphorylation of serine 167 in ERα. BP and HRG produced a synergistic increase in ERα recruitment to the c-Myc gene. CONCLUSION: Our results show that HER ligands enhanced the potency of BP to stimulate oncogene expression and breast cancer cell proliferation in vitro via ERα, suggesting that parabens might be active at exposure levels not previously considered toxicologically relevant from studies testing their effects in isolation. CITATION: Pan S, Yuan C, Tagmount A, Rudel RA, Ackerman JM, Yaswen P, Vulpe CD, Leitman DC. 2016. Parabens and human epidermal growth factor receptor ligand cross-talk in breast cancer cells. Environ Health Perspect 124:563-569; http://dx.doi.org/10.1289/ehp.1409200.


Subject(s)
Estrogens/toxicity , Parabens/toxicity , Cell Line, Tumor , ErbB Receptors/metabolism , Estrogen Receptor alpha/metabolism , Genes, myc , Humans , Neuregulin-1/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
3.
Expert Opin Investig Drugs ; 21(7): 1031-42, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22616988

ABSTRACT

INTRODUCTION: The Women's Health Initiative Estrogen Plus Progestin clinical trial demonstrated the risks exceeded the benefits which have led to a decline in menopausal hormone therapy (MHT) by greater than 50%. MHT use was initiated long before there was a significant understanding of the molecular mechanisms of estrogens. It has become clear that the problem with the current estrogens in MHT is they act non-selectively as an agonist in all tissues that contain estrogen receptors. MF101 is an oral, botanically derived extract that was designed to selectively regulate estrogen receptor beta (ERß) because the increased risk of breast and endometrial cancer is due to the activation of estrogen receptor alpha (ERα) by estrogens. Preclinical and clinical data support a role for selective ERß agonists, such as MF101, for vasomotor symptoms without increasing cancer risks. AREAS COVERED: The review covers the biological, pharmacological and clinical advantages of MF101, and the unique ability of MF101 to selectively target the ERß pathway for the treatment of hot flashes (HF). EXPERT OPINION: Preclinical and clinical studies indicate that MF101, a selective estrogen receptor beta agonist, represents a new class of drugs that is safe and effective for treating HF and nighttime awakenings.


Subject(s)
Estrogen Receptor beta/agonists , Menopause/drug effects , Plant Extracts/therapeutic use , Selective Estrogen Receptor Modulators/therapeutic use , Vasomotor System/drug effects , Clinical Trials, Phase III as Topic , Female , Hot Flashes/drug therapy , Hot Flashes/etiology , Humans , Menopause/metabolism , Menopause/psychology , Plant Extracts/adverse effects , Plant Extracts/isolation & purification , Selective Estrogen Receptor Modulators/adverse effects , Selective Estrogen Receptor Modulators/isolation & purification , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep Initiation and Maintenance Disorders/etiology , Treatment Outcome
4.
Am J Phys Anthropol ; 148(1): 88-97, 2012 May.
Article in English | MEDLINE | ID: mdl-22460223

ABSTRACT

Phytoestrogens, or naturally occurring estrogen-mimicking compounds, are found in many human plant foods, such as soybeans (Glycine max) and other legumes. Because the consumption of phytoestrogens may result in both health benefits of protecting against estrogen-dependent cancers and reproductive costs of disrupting the developing endocrine system, considerable biomedical research has been focused on the physiological and behavioral effects of these compounds. Despite this interest, little is known about the occurrence of phytoestrogens in the diets of wild primates, nor their likely evolutionary importance. We investigated the prevalence of estrogenic plant foods in the diets of two folivorous primate species, the red colobus monkey (Procolobus rufomitratus) of Kibale National Park and mountain gorilla (Gorilla beringei) of Bwindi Impenetrable National Park, both in Uganda. To examine plant foods for estrogenic activity, we screened 44 plant items (species and part) comprising 78.4% of the diet of red colobus monkeys and 53 plant items comprising 85.2% of the diet of mountain gorillas using transient transfection assays. At least 10.6% of the red colobus diet and 8.8% of the gorilla diet had estrogenic activity. This was mainly the result of the red colobus eating three estrogenic staple foods and the gorillas eating one estrogenic staple food. All estrogenic plants exhibited estrogen receptor (ER) subtype selectivity, as their phytoestrogens activated ERß, but not ERα. These results demonstrate that estrogenic plant foods are routinely consumed by two folivorous primate species. Phytoestrogens in the wild plant foods of these two species and many other wild primates may have important implications for understanding primate reproductive ecology.


Subject(s)
Colobus/physiology , Diet/statistics & numerical data , Gorilla gorilla/physiology , Phytoestrogens , Plants/classification , Animals , Cell Line, Tumor , Feeding Behavior , Humans , Uganda
5.
Semin Reprod Med ; 30(1): 14-22, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22271290

ABSTRACT

Estrogens are frequently used in reproductive medicine. The Women's Health Initiative trial found that the risks of menopausal hormone therapy (MHT) exceed the benefits. The estrogens in MHT, however, were introduced prior to our understanding of the mechanism of action of estrogens. Estrogen signaling is highly complex, involving various DNA regulatory elements to which estrogen receptors bind. Numerous transcription factors and co-regulatory proteins modify chromatin structure to further regulate gene transcription. With a greater understanding of estrogen action, the major problem with the current estrogens in MHT appears to be that they are nonselective. This produces beneficial effects in bone, brain, and adipose tissue but increases the risk of breast and endometrial cancer and thromboembolism. Resurrecting MHT for long-term therapy will require the development of more selective estrogens, such as estrogen receptor (ER)ß-selective estrogens and tissue-selective ERα agonists. These compounds will offer the best prospects to expand the indications of MHT and thus prevent the chronic conditions associated with menopause.


Subject(s)
Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Gene Expression Regulation , Animals , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Anticarcinogenic Agents/pharmacology , Anticarcinogenic Agents/therapeutic use , Diabetes Mellitus, Type 2/prevention & control , Epigenesis, Genetic/drug effects , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/agonists , Estrogen Receptor beta/genetics , Estrogens/metabolism , Estrogens/pharmacology , Estrogens/therapeutic use , Female , Gene Expression Regulation/drug effects , Humans , Male , Metabolic Syndrome/prevention & control , Molecular Targeted Therapy , Neoplasms/prevention & control , Obesity/prevention & control , Organ Specificity , Response Elements/drug effects
6.
PLoS One ; 6(12): e28333, 2011.
Article in English | MEDLINE | ID: mdl-22163294

ABSTRACT

Long-term estrogen deficiency increases the risk of obesity, diabetes and metabolic syndrome in postmenopausal women. Menopausal hormone therapy containing estrogens might prevent these conditions, but its prolonged use increases the risk of breast cancer, as wells as endometrial cancer if used without progestins. Animal studies indicate that beneficial effects of estrogens in adipose tissue and adverse effects on mammary gland and uterus are mediated by estrogen receptor alpha (ERα). One strategy to improve the safety of estrogens to prevent/treat obesity, diabetes and metabolic syndrome is to develop estrogens that act as agonists in adipose tissue, but not in mammary gland and uterus. We considered plant extracts, which have been the source of many pharmaceuticals, as a source of tissue selective estrogens. Extracts from two plants, Glycyrrhiza uralensis (RG) and Pueraria montana var. lobata (RP) bound to ERα, activated ERα responsive reporters, and reversed weight gain and fat accumulation comparable to estradiol in ovariectomized obese mice maintained on a high fat diet. Unlike estradiol, RG and RP did not induce proliferative effects on mammary gland and uterus. Gene expression profiling demonstrated that RG and RP induced estradiol-like regulation of genes in abdominal fat, but not in mammary gland and uterus. The compounds in extracts from RG and RP might constitute a new class of tissue selective estrogens to reverse weight gain, fat accumulation and metabolic syndrome in postmenopausal women.


Subject(s)
Breast/drug effects , Estrogens/metabolism , Glycyrrhiza uralensis/metabolism , Mammary Glands, Animal/drug effects , Plant Extracts/metabolism , Pueraria/metabolism , Uterus/drug effects , Weight Gain/drug effects , Adipose Tissue , Animals , Body Weight , Cell Line, Tumor , Cell Proliferation/drug effects , Estrogen Receptor alpha/biosynthesis , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Mice , Neoplasm Transplantation , Oligonucleotide Array Sequence Analysis
7.
J Immunol ; 186(7): 4354-60, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21357268

ABSTRACT

Glucocorticoids exert potent anti-inflammatory effects by repressing proinflammatory genes. We previously demonstrated that estrogens repress numerous proinflammatory genes in U2OS cells. The objective of this study was to determine if cross talk occurs between the glucocorticoid receptor (GR) and estrogen receptor (ER)α. The effects of dexamethasone (Dex) and estradiol on 23 proinflammatory genes were examined in human U2OS cells stably transfected with ERα or GR. Three classes of genes were regulated by ERα and/or GR. Thirteen genes were repressed by both estradiol and Dex (ER/GR-repressed genes). Five genes were repressed by ER (ER-only repressed genes), and another five genes were repressed by GR (GR-only repressed genes). To examine if cross talk occurs between ER and GR at ER/GR-repressed genes, U2OS-GR cells were infected with an adenovirus that expresses ERα. The ER antagonist, ICI 182780 (ICI), blocked Dex repression of ER/GR-repressed genes. ICI did not have any effect on the GR-only repressed genes or genes activated by Dex. These results demonstrate that ICI acts on subset of proinflammatory genes in the presence of ERα but not on GR-activated genes. ICI recruited ERα to the IL-8 promoter but did not prevent Dex recruitment of GR. ICI antagonized Dex repression of the TNF response element by blocking the recruitment of nuclear coactivator 2. These findings indicate that the ICI-ERα complex blocks Dex-mediated repression by interfering with nuclear coactivator 2 recruitment to GR. Our results suggest that it might be possible to exploit ER and GR cross talk for glucocorticoid therapies using drugs that interact with ERs.


Subject(s)
Inflammation Mediators/physiology , Receptor Cross-Talk/immunology , Receptors, Estrogen/physiology , Receptors, Glucocorticoid/physiology , Adenoviruses, Human/genetics , Adenoviruses, Human/immunology , Cell Line, Tumor , Dexamethasone/pharmacology , Estradiol/analogs & derivatives , Estradiol/pharmacology , Estradiol/physiology , Estrogen Antagonists/pharmacology , Fulvestrant , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/prevention & control , Inflammation Mediators/antagonists & inhibitors , Lung/immunology , Lung/metabolism , Lung/pathology , Receptor Cross-Talk/drug effects , Receptors, Estrogen/antagonists & inhibitors , Receptors, Glucocorticoid/antagonists & inhibitors
8.
Breast Cancer Res Treat ; 129(3): 777-84, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21120602

ABSTRACT

The role of estrogen receptor beta (ERß) in breast cancer is unclear. ERß is considered to have a protective role in breast cancer development based on findings demonstrating that ERß expression inhibits ERα-mediated proliferation of breast cancer cells. We previously demonstrated that ERß causes a ligand independent G2 cell cycle arrest in MCF-7 cells. To study the mechanisms of the ERß-mediated G2 cell cycle arrest, we investigated its effects on the regulatory pathways responsible for the G2/M phase transition. We found that ERß inhibits CDK1 activity, which is the critical determinant of the G2/M progression. CDK1 activity is modulated by both stimulatory and inhibitory factors. Cyclin B1 is the major activator of CDK1. ERß inhibited the cell cycle-dependent stimulation of cyclin B1 mRNA and protein. GADD45A and BTG2 are two major inhibitors of CDK1, which have been implicated in breast tumor formation. Based on these findings, we explored if the expression pattern of GADD45A and BTG2 is affected by ERß. We found that ERß stimulates GADD45A and BTG2 mRNA levels. The induction of these two genes is caused by ERß binding directly to these genes and recruiting c-jun and NCOA2. Our findings demonstrated that unliganded ERß causes a G2 cell cycle arrest by inactivating CDK1 through the repression of cyclin B1 and stimulation of GADD45A and BTG2 expression. These results provide evidence that drugs that stimulate the production of unliganded ERß may be effective new therapies to prevent breast cancer.


Subject(s)
CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/metabolism , Cyclin B1/metabolism , Estrogen Receptor beta/metabolism , Immediate-Early Proteins/metabolism , Nuclear Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CDC2 Protein Kinase/genetics , Cell Cycle Proteins/genetics , Cell Division , Cell Line, Tumor , Cyclin B1/genetics , Female , G2 Phase Cell Cycle Checkpoints , Gene Expression Regulation , Genes, jun , Humans , Immediate-Early Proteins/genetics , Nuclear Proteins/genetics , Nuclear Receptor Coactivator 2/genetics , Nuclear Receptor Coactivator 2/metabolism , RNA, Messenger , Tumor Suppressor Proteins/genetics
9.
Curr Opin Pharmacol ; 10(6): 629-36, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20951642

ABSTRACT

Estrogenic effects are mediated through two estrogen receptor (ER) subtypes, ERα and ERß. Estrogens are the most commonly prescribed drugs to treat menopausal conditions, but by non-selectively triggering both ERα and ERß pathways in different tissues they can cause serious adverse effects. The different sizes of the binding pockets and sequences of their activation function domains indicate that ERα and ERß should have different specificities for ligands and biological responses that can be exploited for designing safer and more selective estrogens. ERα and ERß regulate different genes by binding to different regulatory elements and recruiting different transcription and chromatin remodeling factors that are expressed in a cell-specific manner. ERα-selective and ERß-selective agonists have been identified that demonstrate that the two ERs produce distinct biological effects. ERα and ERß agonists are a promising new approach for treating specific conditions associated with menopause.


Subject(s)
Breast Neoplasms/prevention & control , Estrogen Receptor alpha/agonists , Estrogen Receptor beta/agonists , Inflammation/drug therapy , Selective Estrogen Receptor Modulators/pharmacology , Breast Neoplasms/metabolism , Cell Line , Chromatin Assembly and Disassembly , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Estrogens/metabolism , Estrogens/pharmacology , Female , Gene Expression/drug effects , Gene Regulatory Networks , Hot Flashes/drug therapy , Humans , Ligands , Menopause , Molecular Targeted Therapy , Nuclear Receptor Coactivators/genetics , Nuclear Receptor Coactivators/metabolism , Protein Binding , Selective Estrogen Receptor Modulators/metabolism , Transcription Factors/metabolism , Weight Gain/drug effects
10.
PLoS One ; 5(7): e11791, 2010 Jul 27.
Article in English | MEDLINE | ID: mdl-20668547

ABSTRACT

Estrogens are used extensively to treat hot flashes in menopausal women. Some of the beneficial effects of estrogens in hormone therapy on the brain might be due to nongenomic effects in neurons such as the rapid stimulation of calcium oscillations. Most studies have examined the nongenomic effects of estrogen receptors (ER) in primary neurons or brain slices from the rodent brain. However, these cells can not be maintained continuously in culture because neurons are post-mitotic. Neurons derived from embryonic stem cells could be a potential continuous, cell-based model to study nongenomic actions of estrogens in neurons if they are responsive to estrogens after differentiation. In this study ER-subtype specific estrogens were used to examine the role of ERalpha and ERbeta on calcium oscillations in neurons derived from human (hES) and mouse embryonic stem cells. Unlike the undifferentiated hES cells the differentiated cells expressed neuronal markers, ERbeta, but not ERalpha. The non-selective ER agonist 17beta-estradiol (E(2)) rapidly increased [Ca2+]i oscillations and synchronizations within a few minutes. No change in calcium oscillations was observed with the selective ERalpha agonist 4,4',4''-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT). In contrast, the selective ERbeta agonists, 2,3-bis(4-Hydroxyphenyl)-propionitrile (DPN), MF101, and 2-(3-fluoro-4-hydroxyphenyl)-7-vinyl-1,3 benzoxazol-5-ol (ERB-041; WAY-202041) stimulated calcium oscillations similar to E(2). The ERbeta agonists also increased calcium oscillations and phosphorylated PKC, AKT and ERK1/2 in neurons derived from mouse ES cells, which was inhibited by nifedipine demonstrating that ERbeta activates L-type voltage gated calcium channels to regulate neuronal activity. Our results demonstrate that ERbeta signaling regulates nongenomic pathways in neurons derived from ES cells, and suggest that these cells might be useful to study the nongenomic mechanisms of estrogenic compounds.


Subject(s)
Calcium/metabolism , Embryonic Stem Cells/cytology , Estrogen Receptor beta/agonists , Neurons/drug effects , Neurons/metabolism , Animals , Blotting, Western , Calcium Signaling/drug effects , Cell Differentiation , Cell Line , Humans , Immunohistochemistry , Immunoprecipitation , Mice , Nifedipine/pharmacology , Nitriles/pharmacology , Oxazoles/pharmacology , Phosphorylation/drug effects , Plant Extracts/pharmacology , Reverse Transcriptase Polymerase Chain Reaction
11.
J Biol Chem ; 285(29): 22059-66, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20404318

ABSTRACT

Estrogen receptor beta (ERbeta) has potent antiproliferative and anti-inflammatory properties, suggesting that ERbeta-selective agonists might be a new class of therapeutic and chemopreventive agents. To understand how ERbeta regulates genes, we identified genes regulated by the unliganded and liganded forms of ERalpha and ERbeta in U2OS cells. Microarray data demonstrated that virtually no gene regulation occurred with unliganded ERalpha, whereas many genes were regulated by estradiol (E(2)). These results demonstrated that ERalpha requires a ligand to regulate a single class of genes. In contrast, ERbeta regulated three classes of genes. Class I genes were regulated primarily by unliganded ERbeta. Class II genes were regulated only with E(2), whereas class III genes were regulated by both unliganded ERbeta and E(2). There were 453 class I genes, 258 class II genes, and 83 class III genes. To explore the mechanism whereby ERbeta regulates different classes of genes, chromatin immunoprecipitation-sequencing was performed to identify ERbeta binding sites and adjacent transcription factor motifs in regulated genes. AP1 binding sites were more enriched in class I genes, whereas ERE, NFkappaB1, and SP1 sites were more enriched in class II genes. ERbeta bound to all three classes of genes, demonstrating that ERbeta binding is not responsible for differential regulation of genes by unliganded and liganded ERbeta. The coactivator NCOA2 was differentially recruited to several target genes. Our findings indicate that the unliganded and liganded forms of ERbeta regulate three classes of genes by interacting with different transcription factors and coactivators.


Subject(s)
Estrogen Receptor beta/metabolism , Gene Expression Regulation, Neoplastic , Base Pairing , Binding Sites , Cell Line, Tumor , Chromatin Immunoprecipitation , Computational Biology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Genome, Human/genetics , Humans , Ligands , Nuclear Receptor Coactivator 2/metabolism , Protein Binding/genetics , Transcription Factor AP-1/metabolism
12.
Endocrinology ; 151(4): 1662-7, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20160136

ABSTRACT

3,3'-Diindolylmethane (DIM) is a natural compound found in cruciferous vegetables that has antiproliferative and estrogenic activity. However, it is not clear whether the estrogenic effects are mediated through estrogen receptor (ER)alpha, ERbeta, or both ER subtypes. We investigated whether DIM has ER subtype selectivity on gene transcription. DIM stimulated ERbeta but not ERalpha activation of an estrogen response element upstream of the luciferase reporter gene. DIM also selectively activated multiple endogenous genes through ERbeta. DIM did not bind to ERbeta, indicating that it activates genes by a ligand-independent mechanism. DIM causes ERbeta to bind regulatory elements and recruit the steroid receptor coactivator (SRC)-2 coactivator, which leads to the activation of ER target genes. Silencing of SRC-2 inhibited the activation of ER target genes, demonstrating that SRC-2 is required for transcriptional activation by DIM. Our results demonstrate that DIM is a new class of ERbeta-selective compounds, because it does not bind to ERbeta, but instead it selectively recruits ERbeta and coactivators to target genes.


Subject(s)
Estrogen Receptor beta/metabolism , Indoles/metabolism , Nuclear Receptor Coactivator 2/metabolism , Cell Line , Cells, Cultured , Chromatin Immunoprecipitation , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/genetics , Gene Silencing , Genes, Reporter/drug effects , Humans , Indoles/pharmacology , Nuclear Receptor Coactivator 2/genetics , Radioligand Assay , Response Elements/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Transfection
13.
Mol Cell Endocrinol ; 315(1-2): 201-7, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-19744542

ABSTRACT

Tamoxifen can stimulate the growth of some breast tumors and others can become resistant to tamoxifen. We previously showed that unliganded ERbeta inhibits ERalpha-mediated proliferation of MCF-7 cells. We investigated if tamoxifen might have a potential negative effect on some breast cancer cells by blocking the effects of unliganded ERbeta on gene regulation. Gene expression profiles demonstrated that unliganded ERbeta upregulated 196 genes in MCF-7 cells. Tamoxifen significantly inhibited 73 of these genes by greater than 30%, including several growth-inhibitory genes. To explore the mechanism whereby unliganded ERbeta activates genes and how tamoxifen blocks this effect, we used doxycycline-inducible U2OS-ERbeta cells to produce unliganded ERbeta. Doxycycline produced a dose-dependent activation of the NKG2E, MSMB and TUB3A genes, which was abolished by tamoxifen. Unliganded ERbeta recruitment of SRC-2 to the NKG2E gene was blocked by tamoxifen. Our findings suggest that tamoxifen might exert a negative effect on ERbeta expressing tumors due to its antagonistic action on unliganded ERbeta.


Subject(s)
Cell Proliferation/drug effects , Estrogen Antagonists/pharmacology , Estrogen Receptor beta/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Tamoxifen/pharmacology , Breast Neoplasms/genetics , Cell Line, Tumor , Estrogen Antagonists/metabolism , Estrogen Receptor beta/genetics , Female , Humans , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Promoter Regions, Genetic , Tamoxifen/metabolism
14.
PLoS One ; 4(7): e6271, 2009 Jul 17.
Article in English | MEDLINE | ID: mdl-19609440

ABSTRACT

Estrogens produce biological effects by interacting with two estrogen receptors, ERalpha and ERbeta. Drugs that selectively target ERalpha or ERbeta might be safer for conditions that have been traditionally treated with non-selective estrogens. Several synthetic and natural ERbeta-selective compounds have been identified. One class of ERbeta-selective agonists is represented by ERB-041 (WAY-202041) which binds to ERbeta much greater than ERalpha. A second class of ERbeta-selective agonists derived from plants include MF101, nyasol and liquiritigenin that bind similarly to both ERs, but only activate transcription with ERbeta. Diarylpropionitrile represents a third class of ERbeta-selective compounds because its selectivity is due to a combination of greater binding to ERbeta and transcriptional activity. However, it is unclear if these three classes of ERbeta-selective compounds produce similar biological activities. The goals of these studies were to determine the relative ERbeta selectivity and pattern of gene expression of these three classes of ERbeta-selective compounds compared to estradiol (E(2)), which is a non-selective ER agonist. U2OS cells stably transfected with ERalpha or ERbeta were treated with E(2) or the ERbeta-selective compounds for 6 h. Microarray data demonstrated that ERB-041, MF101 and liquiritigenin were the most ERbeta-selective agonists compared to estradiol, followed by nyasol and then diarylpropionitrile. FRET analysis showed that all compounds induced a similar conformation of ERbeta, which is consistent with the finding that most genes regulated by the ERbeta-selective compounds were similar to each other and E(2). However, there were some classes of genes differentially regulated by the ERbeta agonists and E(2). Two ERbeta-selective compounds, MF101 and liquiritigenin had cell type-specific effects as they regulated different genes in HeLa, Caco-2 and Ishikawa cell lines expressing ERbeta. Our gene profiling studies demonstrate that while most of the genes were commonly regulated by ERbeta-selective agonists and E(2), there were some genes regulated that were distinct from each other and E(2), suggesting that different ERbeta-selective agonists might produce distinct biological and clinical effects.


Subject(s)
Estrogen Receptor beta/agonists , Gene Expression Regulation/drug effects , Blotting, Western , Cell Line , Estradiol/pharmacology , Fluorescence Resonance Energy Transfer , Humans , Lignans , Nitriles/pharmacology , Oligonucleotide Array Sequence Analysis , Phenols/pharmacology , Propionates/pharmacology , Transcription, Genetic/drug effects
15.
Mol Cell Endocrinol ; 299(2): 204-11, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19059307

ABSTRACT

Selective estrogen receptor modulators (SERMs), such as tamoxifen and raloxifene can act as estrogen receptor (ER) antagonists or agonists depending on the cell type. The antagonistic action of tamoxifen has been invaluable for treating breast cancer, whereas the agonist activity of SERMs also has important clinical applications as demonstrated by the use of raloxifene for osteoporosis. Whereas the mechanism whereby SERMs function as antagonists has been studied extensively very little is known about how SERMs produce agonist effects in different tissues with the two ER types; ERalpha and ERbeta. We examined the regulation of 32 SERM-responsive regions with ERalpha and ERbeta in transiently transfected MCF-7 breast, Ishikawa endometrial, HeLa cervical and WAR-5 prostate cancer cells. The regions were regulated by tamoxifen and raloxifene in some cell types, but not in all cell lines. Tamoxifen activated similar number of regions with ERalpha and ERbeta in the cell lines, whereas raloxifene activated over twice as many regions with ERbeta compared to ERalpha. In Ishikawa endometrial cancer cells, tamoxifen activated 17 regions with ERalpha, whereas raloxifene activated only 2 regions, which might explain their different effects on the endometrium. Microarray studies also found that raloxifene regulated fewer genes than tamoxifen in U2OS bone cancer cells expressing ERalpha, whereas tamoxifen was equally effective at regulating genes with ERalpha and ERbeta. Our studies indicate that tamoxifen is a non-selective agonist, whereas raloxifene is a relative ERbeta-selective agonist, and suggest that ERbeta-selective SERMs might be safer for treating clinical conditions that are dependent on the agonist property of SERMs.


Subject(s)
Gene Expression Regulation/drug effects , Organ Specificity/drug effects , Receptors, Estrogen/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Selective Estrogen Receptor Modulators/pharmacology , Cell Line, Tumor , Estradiol/pharmacology , Estrogen Receptor alpha/metabolism , Humans , Raloxifene Hydrochloride/pharmacology , Tamoxifen/pharmacology
16.
Mol Cell Endocrinol ; 283(1-2): 49-57, 2008 Feb 13.
Article in English | MEDLINE | ID: mdl-18177995

ABSTRACT

After the Women's Health Initiative found that the risks of hormone therapy outweighed the benefits, a need for alternative drugs to treat menopausal symptoms has emerged. We explored the possibility that botanical agents used in Traditional Chinese Medicine for menopausal symptoms contain ERbeta-selective estrogens. We previously reported that an extract containing 22 herbs, MF101 has ERbeta-selective properties. In this study we isolated liquiritigenin, the most active estrogenic compound from the root of Glycyrrhizae uralensis Fisch, which is one of the plants found in MF101. Liquiritigenin activated multiple ER regulatory elements and native target genes with ERbeta but not ERalpha. The ERbeta-selectivity of liquiritigenin was due to the selective recruitment of the coactivator steroid receptor coactivator-2 to target genes. In a mouse xenograph model, liquiritigenin did not stimulate uterine size or tumorigenesis of MCF-7 breast cancer cells. Our results demonstrate that some plants contain highly selective estrogens for ERbeta.


Subject(s)
Estrogen Receptor beta/agonists , Flavanones/pharmacology , Glycyrrhiza/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Estrogen Receptor alpha/metabolism , Female , Flavanones/chemistry , Humans , Mice , Mice, Nude , Nuclear Receptor Coactivator 2/metabolism , Transcription, Genetic/drug effects , Transfection , Uterus/cytology , Uterus/drug effects , Xenograft Model Antitumor Assays
17.
J Immunol ; 180(1): 630-6, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-18097065

ABSTRACT

In addition to their role in the development and function of the reproductive system, estrogens have significant anti-inflammatory properties. Although both estrogen receptors (ERs) can mediate anti-inflammatory actions, ERbeta is a more desirable therapeutic target because ERalpha mediates the proliferative effects of estrogens on the mammary gland and uterus. In fact, selective ERbeta agonists have beneficial effects in preclinical models involving inflammation without causing growth-promoting effects on the uterus or mammary gland. However, their mechanism of action is unclear. The purpose of this study was to use microarray analysis to determine whether ERbeta-selective compounds produce their anti-inflammatory effects by repressing transcription of proinflammatory genes. We identified 49 genes that were activated by TNF-alpha in human osteosarcoma U2OS cells expressing ERbeta. Estradiol treatment significantly reduced the activation by TNF-alpha on 18 genes via ERbeta or ERalpha. Most repressed genes were inflammatory genes, such as TNF-alpha, IL-6, and CSF2. Three ERbeta-selective compounds, ERB-041, WAY-202196, and WAY-214156, repressed the expression of these and other inflammatory genes. ERB-041 was the most ERbeta-selective compound, whereas WAY-202196 and WAY-214156 were the most potent. The ERbeta-selective compounds repressed inflammatory genes by recruiting the coactivator, SRC-2. ERB-041 also repressed cytokine genes in PBMCs, demonstrating that ERbeta-selective estrogens have anti-inflammatory properties in immune cells. Our study suggests that the anti-inflammatory effects of ERB-041 and other ERbeta-selective estrogens in animal models are due to transcriptional repression of proinflammatory genes. These compounds might represent a new class of drugs to treat inflammatory disorders.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Estrogen Receptor beta/agonists , Inflammation/genetics , Selective Estrogen Receptor Modulators/pharmacology , Transcription, Genetic/drug effects , Cell Line, Tumor , Cytokines/antagonists & inhibitors , Cytokines/genetics , Down-Regulation , Gene Expression Profiling , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Oligonucleotide Array Sequence Analysis , Oxazoles/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
18.
Mol Endocrinol ; 22(2): 287-303, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17962382

ABSTRACT

Estrogen receptors (ERs) regulate gene transcription by interacting with regulatory elements. Most information regarding how ER activates genes has come from studies using a small set of target genes or simple consensus sequences such as estrogen response element, activator protein 1, and Sp1 elements. However, these elements cannot explain the differences in gene regulation patterns and clinical effects observed with estradiol (E(2)) and selective estrogen receptor modulators. To obtain a greater understanding of how E(2) and selective estrogen receptor modulators differentially regulate genes, it is necessary to investigate their action on a more comprehensive set of native regulatory elements derived from ER target genes. Here we used chromatin immunoprecipitation-cloning and sequencing to isolate 173 regulatory elements associated with ERalpha. Most elements were found in the introns (38%) and regions greater than 10 kb upstream of the transcription initiation site (38%); 24% of the elements were found in the proximal promoter region (<10 kb). Only 11% of the elements contained a classical estrogen response element; 23% of the elements did not have any known response elements, including one derived from the naked cuticle homolog gene, which was associated with the recruitment of p160 coactivators. Transfection studies found that 80% of the 173 elements were regulated by E(2), raloxifene, or tamoxifen with ERalpha or ERbeta. Tamoxifen was more effective than raloxifene at activating the elements with ERalpha, whereas raloxifene was superior with ERbeta. Our findings demonstrate that E(2), tamoxifen, and raloxifene differentially regulate native ER-regulatory elements isolated by chromatin immunoprecipitation with ERalpha and ERbeta.


Subject(s)
Estradiol/pharmacology , Estrogen Receptor alpha/metabolism , Raloxifene Hydrochloride/pharmacology , Tamoxifen/pharmacology , Binding Sites/genetics , Cell Line, Tumor , Chromatin Immunoprecipitation , Computational Biology , Estrogen Receptor alpha/genetics , Gene Expression Regulation/drug effects , Humans , Introns/genetics , Luciferases/genetics , Luciferases/metabolism , Promoter Regions, Genetic/genetics , Response Elements/genetics , Reverse Transcriptase Polymerase Chain Reaction , Selective Estrogen Receptor Modulators/pharmacology , Transfection
19.
Endocrinology ; 148(7): 3449-58, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17395694

ABSTRACT

Estrogen receptors (ERs) regulate transcription by interacting with regulatory elements in target genes. However, known ER regulatory elements cannot explain the expression profiles of genes activated by estradiol (E2) and selective estrogen receptor modulators (SERMs). We previously showed that the killer cell lectin-like receptor (NKG2E) gene is regulated by E2, tamoxifen, and raloxifene. Here we used the NKG2E gene as a model to investigate the mechanism whereby target genes are regulated by E2 and SERMs with ERalpha. The ER regulatory element in the NKG2E promoter was mapped to the -1825 and -1686 region. Full activation of the NKG2E promoter required the collaboration between a transcription factor cluster containing c-jun, heat-shock factor 2, and CCAAT/enhancer-binding protein beta and a unique variant estrogen response element (ERE) that has only a two nucleotide spacer between half sites. The cluster elements and the variant ERE were inactive on their own, but the regulation by E2 and SERMs was restored when the c-jun, heat-shock factor-2, and CCAAT/enhancer-binding protein beta cluster was placed upstream of the variant ERE. The activation of the NKG2E gene by E2 and selective ER modulators was associated with the recruitment of the p160 coactivators glucocorticoid receptor-interacting protein 1 and amplified in breast cancer 1 but not steroid receptor coactivator 1. These studies identified one of the most complex ER regulatory units thus far reported and demonstrate that a cluster of flanking transcription factors collaborate with ER to induce a functional ERE in the NKG2E promoter.


Subject(s)
Estrogen Receptor alpha/metabolism , Receptors, Immunologic/genetics , Response Elements/genetics , Selective Estrogen Receptor Modulators/pharmacology , Transcription Factors/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , Electrophoretic Mobility Shift Assay , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Gene Expression Regulation/drug effects , Heat-Shock Proteins/metabolism , Humans , Immunoblotting , Luciferases/genetics , Luciferases/metabolism , Mutation , Promoter Regions, Genetic/genetics , Protein Binding , Proto-Oncogene Proteins c-jun/metabolism , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Raloxifene Hydrochloride/pharmacology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tamoxifen/pharmacology , Transcription Factors/genetics
20.
Endocrinology ; 148(2): 538-47, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17095596

ABSTRACT

Novel estrogenic therapies are needed that ameliorate menopausal symptoms and have the bone-sparing effects of endogenous estrogens but do not promote breast or uterine cancer. Recent evidence suggests that selective activation of the estrogen receptor (ER)-beta subtype inhibits breast cancer cell proliferation. To establish whether ERbeta-selective ligands represent a viable approach to improve hormone therapy, we investigated whether the estrogenic activities present in an herbal extract, MF101, used to treat hot flashes, are ERbeta selective. MF101 promoted ERbeta, but not ERalpha, activation of an estrogen response element upstream of the luciferase reporter gene. MF101 also selectively regulates transcription of endogenous genes through ERbeta. The ERbeta selectivity was not due to differential binding because MF101 binds equally to ERalpha and ERbeta. Fluorescence resonance energy transfer and protease digestion studies showed that MF101 produces a different conformation in ERalpha from ERbeta when compared with the conformations produced by estradiol. The specific conformational change induced by MF101 allows ERbeta to bind to an estrogen response element and recruit coregulatory proteins that are required for gene activation. MF101 did not activate the ERalpha-regulated proliferative genes, c-myc and cyclin D1, or stimulate MCF-7 breast cancer cell proliferation or tumor formation in a mouse xenograft model. Our results demonstrate that herbal ERbeta-selective estrogens may be a safer alternative for hormone therapy than estrogens that nonselectively activate both ER subtypes.


Subject(s)
Anemarrhena/chemistry , Estrogen Receptor beta/genetics , Plant Extracts/pharmacology , Transcriptional Activation/drug effects , Animals , Breast Neoplasms/chemically induced , Breast Neoplasms/etiology , Breast Neoplasms/pathology , Carcinogens , Cell Division/drug effects , Cell Line , Diethylstilbestrol , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/chemistry , Estrogen Receptor beta/metabolism , Estrogens/metabolism , Female , Humans , Mice , Mice, Nude , Molecular Conformation , Neoplasm Transplantation , Organ Size/drug effects , Plant Extracts/metabolism , Response Elements/drug effects , Response Elements/physiology , Transcription, Genetic/drug effects , Transplantation, Heterologous , Uterus/drug effects , Uterus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...