Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(23): 30239-30254, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38808540

ABSTRACT

We introduce thiazolo[5,4-d]thiazole (TT)-based derivatives featuring carbazole, phenothiazine, or triphenylamine donor units as hole-selective materials to enhance the performance of wide-bandgap perovskite solar cells (PSCs). The optoelectronic properties of the materials underwent thorough evaluation and were substantially fine-tuned through deliberate molecular design. Time-of-flight hole mobility TTs ranged from 4.33 × 10-5 to 1.63 × 10-3 cm2 V-1 s-1 (at an electric field of 1.6 × 105 V cm-1). Their ionization potentials ranged from -4.93 to -5.59 eV. Using density functional theory (DFT) calculations, it has been demonstrated that S0 → S1 transitions in TTs with carbazolyl or ditert-butyl-phenothiazinyl substituents are characterized by local excitation (LE). Mixed intramolecular charge transfer (ICT) and LE occurred for compounds containing ditert-butyl carbazolyl-, dimethoxy carbazolyl-, or alkoxy-substituted triphenylamino donor moieties. The selected derivatives of TT were used for the preparation of hole-selective layers (HSL) in PSC with the structure of glass/ITO/HSLs/Cs0.18FA0.82Pb(I0.8Br0.2)3/PEAI/PC61BM/BCP/Ag. The alkoxy-substituted triphenylamino containing TT (TTP-DPA) has been demonstrated to be an effective material for HSL. Its layer also functioned well as an interlayer, improving the surface of control HSL_2PACz (i.e., reducing the surface energy of 2PACz from 66.9 to 52.4 mN m-1), thus enabling precise control over perovskite growth energy level alignment and carrier extraction/transportation at the hole-selecting contact of PSCs. 2PACz/TTP-DPA-based devices showed an optimized performance of 19.1 and 37.0% under 1-sun and 3000 K LED (1000 lx) illuminations, respectively. These values represent improvements over those achieved by bare 2PACz-based devices, which attained efficiencies of 17.4 and 32.2%, respectively. These findings highlight the promising potential of TTs for the enhancement of the efficiencies of PSCs.

2.
Materials (Basel) ; 17(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38541511

ABSTRACT

Two derivatives of phenyl pyrimidine as acceptor unit and triphenylamino or 4,4'-dimethoxytriphenylamino donor groups were designed and synthesized as emitters for organic light-emitting diodes (OLEDs) aiming to utilize triplet excitons in the electroluminescence. Thermogravimetric analysis revealed high thermal stability of the compounds with 5% weight loss temperatures of 397 and 438 °C. The theoretical estimations and photophysical data show the contributions of local excited and charge transfer states into emission. The addition of the methoxy groups led to the significant improvement of hole-transporting properties and the bathochromic shift of the emission from blue to green-blue spectral diapason. It is shown that mixing of the compounds with the organic host results in facilitation of the delayed emission. The singlet-triplet energy splitting was found to be too big for the thermally activated delayed fluorescence. No thermal activation of the long-lived emission was detected. No experimental evidence for triplet-triplet annihilation and room temperature phosphorescence were detected making the hot exciton mechanism the most probable one. The OLEDs based on the compounds reached the maximum external quantum efficiency of up to 10.6%.

3.
Beilstein J Org Chem ; 19: 1867-1880, 2023.
Article in English | MEDLINE | ID: mdl-38116244

ABSTRACT

The pyridine-3,5-dicarbonitrile moiety has gained significant attention in the field of materials chemistry, particularly in the development of heavy-metal-free pure organic light-emitting diodes (OLEDs). Extensive research on organic compounds exhibiting thermally activated delayed fluorescence (TADF) has led to numerous patents and research articles. This study focuses on the synthesis and investigation of the semiconducting properties of polyaromatic π-systems containing two and three fragments of pyridine-2,6-dicarbazolyl-3,5-dicarbonitrile. The compounds are synthesized by Sonogashira coupling reactions and characterized by steady-state and time-resolved luminescence spectroscopy. The compounds show efficient intramolecular charge transfer (ICT) from the donor to the acceptor. The photoluminescence (PL) spectra of the solutions of the compounds showed non-structured emission peaks in the visible region, which are attributed to ICT emission. The PL intensities of the solutions of the compounds are enhanced after deoxygenation, which is indicative of TADF. The photoluminescence quantum yields and TADF properties of the compounds are sensitive to the medium. Cyclic voltammetry measurements indicate good hole-blocking and electron-injecting properties due to their high ionization potentials. Photoelectron spectroscopy and time-of-flight measurements reveal good electron-transporting properties for one of the compounds. In general, polyaromatic π-systems with pyridine-3,5-dicarbonitrile fragments demonstrate promising potential for use in organic electronic devices, such as OLEDs.

4.
Molecules ; 28(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37630259

ABSTRACT

We investigated the effects of sterically nonrestricted electron-accepting substituents of three isomeric indolocarbazole derivatives on their aggregation-induced emission enhancement, mechanochromic luminescence and thermally activated delayed fluorescence. The compounds are potentially efficient emitters for host-free organic light-emitting diodes. The films of indolocarbazole derivatives exhibit emissions with wavelengths of fluorescence intensity maxima from 483 to 500 nm and photoluminescence quantum yields from 31 to 58%. The ionization potentials of the solid samples, measured by photoelectron emission spectrometry, are in the narrow range of 5.78-5.99 eV. The electron affinities of the solid samples are in the range of 2.99-3.19 eV. The layers of the derivatives show diverse charge-transporting properties with maximum hole mobility reaching 10-4 cm2/Vs at high electric fields. An organic light-emitting diode with a light-emitting layer of neat compound shows a turn-on voltage of 4.1 V, a maximum brightness of 24,800 cd/m2, a maximum current efficiency of 12.5 cd/A and an external quantum efficiency of ca. 4.8%. When the compounds are used as hosts, green electroluminescent devices with an external quantum efficiency of ca. 11% are obtained. The linking topology of the isomeric derivatives of indolo[2,3-a]carbazole and indolo[3,2-b]carbazole and the electron-accepting anchors influences their properties differently, such as aggregation-induced emission enhancement, mechanochromic luminescence, thermally activated delayed fluorescence, charge-transporting, and electroluminescent properties. The derivative indolo[3,2-b]carbazole displays good light-emitting properties, while the derivatives of indolo[2,3-a]carbazole show good hosting properties, which make them useful for application in electroluminescent devices.

5.
Dalton Trans ; 49(11): 3393-3397, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32129412

ABSTRACT

The first examples of phosphorescent platinum complexes bearing 2- and 3-(2-pyridyl)benzo[b]selenophenes (PyBSe) were synthesized and fully characterized. Almost identical ionization potential values (5.6 and 5.58 eV) of the solid samples of the Pt complexes were obtained by electron photoemission spectroscopy. Having slightly different molecular design, the solid solutions of the complexes emitted efficient green and red phosphorescence with absolute quantum yields of 52% (for green) and 11.6% (for red). It is demonstrated that the platinum complexes synthesized can be used as phosphorescent dopants for hybrid solution-processable OLEDs.

6.
Inorg Chem ; 58(15): 10174-10183, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31310535

ABSTRACT

The synthesis of new iridium(III) complexes containing a 2-(benzo[b]selenophen-2-yl)pyridine ligand is reported along with their photophysical, thermal, electrochemical and electroluminescent properties. These complexes are characterized by deep red phosphorescence with photoluminescence quantum yields exceeding 31% in the solid state. Solid layers of the complexes were characterized by ionization potentials of 5.17-5.27 eV and electron affinities of 2.87-2.95 eV. Their thermal and electrochemical stabilities were proved by cyclic voltammetry and thermogravimetric analysis. Deep red selenium-based iridium phosphorescent emitters were used in red electroluminescent devices which were characterized by a deep red color with Commission Internationale de l'Eclairage (CIE 1931) chromaticity coordinates (x, y) of (0.69, 0.31). This color is deeper than that defined by the red color standard (0.67, 0.33) of the National Television System Committee (NTSC) or CIE 1931 of (0.68, 0.32) of the widely known red phosphorescent emitter bis(1-phenylisoquinoline)(acetylacetonate)iridium(III) (Ir(piq)2(acac)). Using newly developed deep red iridium complexes, white hybrid wet-processable light-emitting devices were fabricated, the electroluminescence of which was characterized by a white color with a color rendering index (CRI) reaching 85. White hybrid OLEDs were obtained by mixing blue fluorescence, green thermally activated delayed fluorescence, and red phosphorescence. They showed a maximum brightness exceeding 10000 cd/m2 and a high external quantum efficiency of 6.3% as for solution-processed white devices.

7.
Chemistry ; 25(13): 3325-3336, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30536688

ABSTRACT

With the aim of developing all-organic bipolar semiconductors with high charge mobility and efficient E-type fluorescence (so-called TADF) as environmentally friendly light-emitting materials for optoelectronic applications, four noble metals-free dyes with linear and V-shapes were designed using accepting pyridine-3,5-dicarbonitrile and donating carbazole units. By exploiting a donor-acceptor design strategy and using moieties with different donating and accepting abilities, TADF emitters with a wide variety of molecular weights were synthesized to achieve the optimum combination of charge-transporting and fluorescent properties in one TADF molecule. Depending on molecule structures, different TADF emitters capable of emitting in the range from 453 to 550 nm with photoluminescence quantum yields up to 98 % for the solutions in oxygen-free toluene were obtained. All compounds showed bipolar charge-transport. Hole mobility of 2.8×10-3  cm2 /Vs at 7×105  V cm-1 was observed for the compound containing two di-tert-butyl-substituted carbazole moieties. The compounds were tested in both non-doped and doped organic light-emitting diodes using different hosts. It was shown that the developed TADF emitters are suitable for different color devices with electroluminescence ranging from blue to yellow and with brightness, maximum current and external quantum efficiencies exceeding 10 000 cd m-2 , 15 cd/A, and 7 %, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...