Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rec ; 1(1): 53-62, 2001.
Article in English | MEDLINE | ID: mdl-11893058

ABSTRACT

A systematic approach evaluating template-directed ligation reactions has now resulted in a simple outline for a two-stage replication cycle. This cycle builds on an efficient method for reading the information encoded in DNA into an amplified translation product. It is further demonstrated that the translation product strand is capable of catalyzing the synthesis of the original DNA strand. We propose that this cycle represents just one of many possible solutions; other chemical ligation or polymerization reactions could be accommodated with different templates. In that context, a new template, derived by modest changes to the DNA backbone, has been developed and has been shown to hybridize under reaction conditions different than those accessible to DNA. Therefore, the conceptual groundwork has been laid for extending this approach to encoding and reading stored information in molecules other than the natural biopolymers at the densities found in biology.


Subject(s)
Combinatorial Chemistry Techniques/methods , DNA/chemistry , Oligonucleotides/chemical synthesis , DNA/genetics , DNA/metabolism , Templates, Genetic , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...