Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38675007

ABSTRACT

The obtention of amorphous solid dispersions (ASDs) of mycophenolic acid (MPA) in poly(ε-caprolactone) (PCL) is reported in this paper. An improvement in the bioavailability of the drug is possible thanks to the favorable specific interactions occurring in this system. Differential scanning calorimetry (DSC) was used to investigate the miscibility of PCL/MPA blends, measuring glass transition temperature (Tg) and analyzing melting point depression to obtain a negative interaction parameter, which indicates the development of favorable inter-association interactions. Fourier transform infrared spectroscopy (FTIR) was used to analyze the specific interaction occurring in the blends. Drug release measurements showed that at least 70% of the drug was released by the third day in vitro in all compositions. Finally, preliminary in vitro cell culture experiments showed a decreased number of cancerous cells over the scaffolds containing MPA, presumably arising from the anti-cancer activity attributable to MPA.

2.
J Mater Chem B ; 9(20): 4219-4229, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33998613

ABSTRACT

This paper reports the obtention of amorphous solid dispersions (ASDs) of xanthohumol (XH) in PCL containing up to 50 wt% of the bioactive compound in the amorphous form thanks to the advantageous specific interactions established in this system. The miscibility of the PCL/XH blends was investigated using DSC. Melting point depression analysis yielded a negative interaction parameter indicating the occurrence of favorable inter-association interactions. XRD analyses performed at room temperature agree with the crystallinity results obtained on the heating runs performed by DSC. FTIR spectroscopy reveals strong C[double bond, length as m-dash]OO-H specific interactions between the hydroxyl groups of XH and the carbonyl groups of PCL. The AFM analysis of the blends obtained by spin-coating shows the variation of crystalline morphology with composition. Finally, tensile tests reveal high toughness retention for the blends in which XH can be dispersed in the amorphous form (containing up to 50 wt% XH). In summary, PCL is a convenient matrix to disperse XH in the amorphous form, bringing the possibility of obtaining completely amorphous bioactive materials suitable for the development of non-stiff biomedical devices.


Subject(s)
Biocompatible Materials/chemistry , Flavonoids/chemistry , Polyesters/chemistry , Propiophenones/chemistry , Chemistry, Physical , Materials Testing , Molecular Structure , Particle Size , Porosity , Stress, Mechanical , Surface Properties
3.
Polymers (Basel) ; 13(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668909

ABSTRACT

Chitosan (CS) and poly(vinyl alcohol) (PVA) hydrogels, a polymeric system that shows a broad potential in biomedical applications, were developed. Despite the advantages they present, their mechanical properties are insufficient to support the loads that appear on the body. Thus, it was proposed to reinforce these gels with inorganic glass particles (BG) in order to improve mechanical properties and bioactivity and to see how this reinforcement affects levofloxacin drug release kinetics. Scanning electron microscopy (SEM), X-ray diffraction (XRD), swelling tests, rheology and drug release studies characterized the resulting hydrogels. The experimental results verified the bioactivity of these gels, showed an improvement of the mechanical properties and proved that the added bioactive glass does affect the release kinetics.

4.
J Chem Phys ; 139(12): 121903, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-24089715

ABSTRACT

Fabrication of novel bio-supramolecular structures was achieved by recrystallizing the bacterial surface protein SbpA on amorphous and semicrystalline polylactide derivatives. Differential scanning calorimetry showed that the glass transition temperature (T(g)) for (poly-L-lactide)-PLLA, poly(L,D-lactide)-PDLLA, poly(lactide-co-glycolide)-PLGA and poly(lactide-co-caprolactone)-PLCL was 63 °C, 53 °C, 49 °C and 15 °C, respectively. Tensile stress-strain tests indicated that PLLA, PLGA, and PDLLA had a glassy behaviour when tested below T(g). The obtained Young modulus were 1477 MPa, 1330 MPa, 1306 MPa, and 9.55 MPa for PLLA, PLGA, PDLLA, and PLCL, respectively. Atomic force microscopy results confirmed that SbpA recrystallized on every polymer substrate exhibiting the native S-layer P4 lattice (a = b = 13 nm, γ = 90°). However, the polymer substrate influenced the domain size of the S-protein crystal, with the smallest size for PLLA (0.011 µm(2)), followed by PDLLA (0.034 µm(2)), and PLGA (0.039 µm(2)), and the largest size for PLCL (0.09 µm(2)). quartz crystal microbalance with dissipation monitoring (QCM-D) measurements indicated that the adsorbed protein mass per unit area (~1800 ng cm(-2)) was independent of the mechanical, thermal, and crystalline properties of the polymer support. The slowest protein adsorption rate was observed for amorphous PLCL (the polymer with the weakest mechanical properties and lowest T(g)). QCM-D also monitored protein self-assembly in solution and confirmed that S-layer formation takes place in three main steps: adsorption, self-assembly, and crystal reorganization. Finally, this work shows that biodegradable polylactide derivatives films are a suitable support to form robust biomimetic S-protein layers.


Subject(s)
Bacillaceae/chemistry , Bacterial Proteins/chemistry , Biocompatible Materials/chemistry , Monosaccharide Transport Proteins/chemistry , Polyesters/chemistry , Biocompatible Materials/chemical synthesis , Crystallization , Polyesters/chemical synthesis , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...