Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
SLAS Discov ; 25(2): 207-214, 2020 02.
Article in English | MEDLINE | ID: mdl-31885312

ABSTRACT

In the last 5 years, cellular thermal shift assay (CETSA), a technology based on ligand-induced changes in protein thermal stability, has been increasingly used in drug discovery to address the fundamental question of whether drug candidates engage their intended target in a biologically relevant setting. To analyze lysates from cells submitted to increasing temperature, the detection and quantification of the remaining soluble protein can be achieved using quantitative mass spectrometry, Western blotting, or AlphaScreen techniques. Still, these approaches can be time- and cell-consuming. To cope with limitations of throughput and protein amount requirements, we developed a new coupled assay combining the advantages of a nanoacoustic transfer system and reverse-phase protein array technology within CETSA experiments. We validated the technology to assess engagement of inhibitors of insulin-degrading enzyme (IDE), an enzyme involved in diabetes and Alzheimer's disease. CETSA-acoustic reverse-phase protein array (CETSA-aRPPA) allows simultaneous analysis of many conditions and drug-target engagement with a small sample size, in a rapid, cost-effective, and biological material-saving manner.


Subject(s)
Drug Discovery , High-Throughput Screening Assays/methods , Protein Array Analysis/methods , Proteins/genetics , Acoustics , Cell Line, Tumor , Humans , Ligands , Pharmaceutical Preparations/chemistry , Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...