Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Bioprocess ; 10(1): 65, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-38647947

ABSTRACT

Trehalose is a functional sugar that has numerous applications in food, cosmetic, and pharmaceutical products. Production of trehalose from maltose via a single-step enzymatic catalysis using trehalose synthase (TreS) is a promising method compared with the conventional two-step process due to its simplicity with lower formation of byproducts. In this study, a cold-active trehalose synthase (PaTreS) from Pseudarthrobacter sp. TBRC 2005 was heterologously expressed and characterized. PaTreS showed the maximum activity at 20 °C and maintained 87% and 59% of its activity at 10 °C and 4 °C, respectively. The enzyme had remarkable stability over a board pH range of 7.0-9.0 with the highest activity at pH 7.0. The activity was enhanced by divalent metal ions (Mg2+, Mn2+ and Ca2+). Conversion of high-concentration maltose syrup (100-300 g/L) using PaTreS yielded 71.7-225.5 g/L trehalose, with 4.5-16.4 g/L glucose as a byproduct within 16 h. The work demonstrated the potential of PaTreS as a promising biocatalyst for the development of low-temperature trehalose production, with the advantages of reduced risk of microbial contamination with low generation of byproduct.

2.
Protein J ; 41(4-5): 477-488, 2022 10.
Article in English | MEDLINE | ID: mdl-35931938

ABSTRACT

Levan-type fructooligosaccharides (L-FOSs) are a prominent class of non-digestible oligosaccharides with potential as nutritional prebiotics. Endo-levanase, which randomly hydrolyzes ß-(2,6)-linkages in fructans, is a promising enzyme for short-chain FOS production. In this work, a recombinant levanase (LevBk) from Bacillus koreensis strain HL12 was characterized. Soluble LevBk protein was produced in Escherichia coli BL21(DE3) system at 40 mg/L of culture medium. Based on sequence and structural analysis, LevBk was classified as a member of endo-levanase in GH32 family containing N-terminal substrate binding pocket and C-terminal ß-sandwich domains. LevBk optimally worked at 45 °C, pH 6.0 with the specific activity of 2.43 U/mg. Based on enzymatic hydrolysis, short-chain L-FOSs with degree of polymerization (DP) of 2-4 were produced from hydrolysis of timothy grass levan under optimal conditions for 9-24 h. With its ability to produce L-FOSs with specific chain lengths, LevBk could be attractively applied for converting of levan containing material to high value-added sweetener in the biorefinery industry.


Subject(s)
Fructans , Hexosyltransferases , Bacillus , Fructans/chemistry , Fructans/metabolism , Glycoside Hydrolases , Hexosyltransferases/metabolism , Oligosaccharides/chemistry , Oligosaccharides/metabolism
3.
3 Biotech ; 12(6): 134, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35615748

ABSTRACT

Maltooligosaccharide-forming amylases (MFAses) are promising enzymes for a variety of industrial applications. In this study, a maltooligosaccharide-forming amylase (BkAmy) isolated from Bacillus koreensis HL12 was first heterologous expressed and characterized. According to structural-sequence alignment, BkAmy contained seven conserved regions which are the signature of a novel GH13 subfamily. The gene was expressed in Pichia pastoris KM71 as an extracellular protein with a volumetric activity of 3.38 U/mL culture medium after 72 h induction by 3% (w/v) of methanol. The recombinant BkAmy migrated as a single protein band with an expected size approximately of 55 kDa. BkAmy exhibited the highest catalytic activity on soluble starch with a specific activity of 42.2 U/mg at 40 °C, pH 7.0. The enzyme exhibited 65% relative activity at 30 °C, indicating its advantage on application at moderate reaction temperature desirable for energy saving and reduction of side unwanted reactions. The enzyme exhibited a specific cleavage pattern by releasing maltose (G2), maltotriose (G3) and maltotetraose (G4) from cassava starch with the highest yield of 363 mg/g substrate equivalent to 36% conversion using 40 U/g substrate at 60 min. The work demonstrates the potential of this enzyme on maltooligosaccharide production from starch to create high value-added products in starch processing industries. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03188-1.

4.
Biotechnol Lett ; 43(12): 2299-2310, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34718907

ABSTRACT

OBJECTIVE: To develop an endo-ß-1,4-xylanase with high specificity for production of prebiotic xylooligosaccharides that optimally works at moderate temperature desirable to reduce the energy cost in the production process. RESULTS: The xylB gene, encoding for a glycosyl hydrolase family 11 xylanase from a thermoresistant fungus, Aspergillus niger BCC14405 was expressed in a methylotrophic yeast P. pastoris KM71 in a secreted form. The recombinant XylB showed a high specific activity of 3852 and 169 U mg-1 protein on beechwood xylan and arabinoxylan, respectively with no detectable side activities against different forms of cellulose (Avicel Ò PH101 microcrystalline cellulose, phosphoric acid swollen cellulose and carboxymethylcellulose). The enzyme worked optimally at 45 °C, pH 6.0. It showed a specific cleavage pattern by releasing xylobiose (X2) as the major product from xylooligosaccharides (X3 to X6) substrates. The highest XOS yield of 708 mg g-1 substrate comprising X2, X3 and X6 was obtained from beechwood xylan hydrolysis. CONCLUSION: The enzyme is potent for XOS production and for saccharification of lignocellulosic biomass.


Subject(s)
Aspergillus niger/chemistry , Endo-1,4-beta Xylanases/genetics , Glucuronates/biosynthesis , Oligosaccharides/biosynthesis , Xylans/metabolism , Aspergillus niger/enzymology , Endo-1,4-beta Xylanases/isolation & purification , Enzyme Stability/genetics , Glucuronates/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Oligosaccharides/chemistry , Substrate Specificity , Temperature , Xylans/genetics
5.
J Biosci Bioeng ; 128(6): 637-654, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31204199

ABSTRACT

Cellulolytic enzymes play a key role on conversion of lignocellulosic plant biomass to biofuels and biochemicals in sugar platform biorefineries. In this review, we survey composite carbohydrate-active enzymes (CAZymes) among groups of cellulolytic fungi and bacteria that exist under aerobic and anaerobic conditions. Recent advances in designing effective cellulase mixtures are described, starting from the most complex microbial consortium-based enzyme preparations, to single-origin enzymes derived from intensively studied cellulase producers such as Trichoderma reesei, Talaromyces cellulolyticus, and Penicellium funiculosum, and the simplest minimal enzyme systems comprising selected sets of mono-component enzymes tailor-made for specific lignocellulosic substrates. We provide a comprehensive update on studies in developing high-performance cellulases for biorefineries.


Subject(s)
Cellulases/metabolism , Biofuels , Biomass , Penicillium/enzymology , Talaromyces/enzymology , Trichoderma/enzymology
6.
J Invertebr Pathol ; 132: 125-131, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26408968

ABSTRACT

The binary toxin produced by Lysinibacillus sphaericus is composed of BinA and BinB subunits. Together, but not separately, the two subunits are highly toxic to Culex quinquefasciatus larvae, but show no toxicity to Aedes aegypti. The molecular mechanism underlying intoxication has not been clearly elucidated. The present study compares the binding and the internalization of binary toxin into the midgut epithelial cells of susceptible C. quinquefasciatus mosquito larvae with those of Bin-refractory A. aegypti. The guts from larvae fed with fluorescently labeled toxin were dissected and analyzed using a confocal laser scanning microscope. When fed with a mixture of both components, co-localization of BinA and BinB was detected both on the cell surface and in the cytoplasm of Culex larval gut cells. However, administration of BinA alone resulted in localization only on the cell membrane, whereas BinB alone was detected both on the cell membrane and inside the cytoplasm. In contrast, when a mixture of both components, or each individual component, was fed to Aedes larvae, BinA and BinB were unable to reach the cytoplasm and were localized only on the cell membrane. These results are consistent with the suggestion that the internalization of BinA is essential for toxicity, and that BinB is required for this internalization into susceptible larval gut cells.


Subject(s)
Bacillaceae/chemistry , Bacterial Toxins/pharmacology , Culex/drug effects , Animals , Bacterial Toxins/analysis , Bacterial Toxins/metabolism , Biological Transport , Culex/cytology , Culex/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Insect Proteins/metabolism , Insect Proteins/physiology , Larva/cytology , Larva/drug effects , Larva/metabolism , Membrane Proteins/metabolism , Membrane Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...