Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neth Heart J ; 27(6): 299-303, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30847665

ABSTRACT

BACKGROUND: Next-generation sequencing gene panels are increasingly used for genetic diagnosis in inherited cardiac diseases. Besides pathogenic variants, multiple variants, variants of uncertain significance (VUS) and incidental findings can be detected. Such test results can be challenging for counselling and clinical decision making. METHODS: We present patient cases to illustrate the challenges that can arise when unclear genetic test results are detected in cardiogenetic gene panels. RESULTS: We identified three types of challenging gene panel results: 1) one or more VUS in combination with a pathogenic variant, 2) variants associated with another genetic heart disease, and 3) variants associated with a syndrome involving cardiac features. CONCLUSION: Large gene panels not only increase the detection rates of pathogenic variants but also of variants with uncertain pathogenicity, multiple variants and incidental findings. Gene panel results can be challenging for genetic counselling and require proper pre-test and post-test counselling. We advise evaluation of challenging cases by a multidisciplinary team.

2.
Neth Heart J ; 27(6): 304-309, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30847666

ABSTRACT

BACKGROUND: Genetic heterogeneity is common in inherited cardiac diseases. Next-generation sequencing gene panels are therefore suitable for genetic diagnosis. We describe the results of implementation of cardiomyopathy and arrhythmia gene panels in clinical care. METHODS: We present detection rates for variants with unknown (class 3), likely (class 4), and certain (class 5) pathogenicity in cardiogenetic gene panels since their introduction into diagnostics. RESULTS: In 936 patients tested on the arrhythmia panel, likely pathogenic and pathogenic variants were detected in 8.8% (4.6% class 5; 4.2% class 4), and one or multiple class 3 variants in 34.8%. In 1970 patients tested on the cardiomyopathy panel, likely pathogenic and pathogenic variants were detected in 19.8% (12.0% class 5; 7.9% class 4), and one or multiple class 3 variants in 40.8%. Detection rates of all different classes of variants increased with the increasing number of genes on the cardiomyopathy gene panel. Multiple variants were detected in 11.7% and 28.5% of patients on the arrhythmia and cardiomyopathy panels respectively. In more recent larger versions of the cardiomyopathy gene panel the detection rate of likely pathogenic and pathogenic variants only slightly increased, but was associated with a large increase of class 3 variants. CONCLUSION: Overall detection rates (class 3, 4, and 5 variants) in a diagnostic setting are 44% and 61% for the arrhythmia and cardiomyopathy gene panel respectively, with only a small minority of likely pathogenic and pathogenic variants (8.8% and 19.8% respectively). Larger gene panels can increase the detection rate of likely pathogenic and pathogenic variants, but mainly increase the frequency of variants of unknown pathogenicity.

3.
Neth Heart J ; 18(10): 478-85, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20978592

ABSTRACT

Background. About 30% of dilated cardiomyopathy (DCM) cases are familial. Mutations are mostly found in the genes encoding lamin A/C, beta-myosin heavy chain and the sarcomeric protein cardiac troponin-T (TNNT2). Mutations in TNNT2 are reported in approximately 3% of DCM patients. The overall phenotype caused by TNNT2 mutations is thought to be a fully penetrant, severe disease. This also seems to be true for a recurrent deletion in the TNNT2 gene; p.K217del (also known as p.K210del). Methods. We compared the phenotype of all Dutch patients identified as carrying the TNNT2 p.K217del mutation with those described in the literature. All index patients underwent cardiological evaluation. Family screening was done in all described families. Results. Six DCM patients carrying the TNNT2 p.K217del mutation were identified from four Dutch families. Mean age of disease manifestation was 33 years. Heart transplantation was required in three of them at ages 12, 18 and 19 years. These outcomes are comparable with those described in the literature. Conclusion. Carriers of the TNNT2 p.K217del mutation in our Dutch families, as well as in families described in the literature before, generally show a severe, early-onset form of DCM. (Neth Heart J 2010;18:478-85.).

SELECTION OF CITATIONS
SEARCH DETAIL
...