Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Waste Manag Res ; 42(8): 651-669, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38515069

ABSTRACT

Food waste (FW) has become a global concern, with an estimated 1.3 billion tonnes lost annually, costing about $1 trillion. Environmental and social consequences of FW are significant, contributing to 6% of European Unions' greenhouse gasemissions and affecting global food security. FW occurs is a complex issue occurring at various stages of the food supply chain (FSC) and is influenced by multiple factors such as infrastructure, available knowledge and socio-economic conditions. Developed countries FW is more prevalent at the consumption stage, whereas in the developing countries losses occur in agricultural production, post-harvest and distribution stage. Accurate quantification of FW across the supply chain is crucial and monitoring key performance indicators helps identify areas for improvement. The European Union mandates FW measurement, aligning with sustainable development goals, emphasizing the need for effective waste prevention measures. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach was utilized to conduct a systematic literature review on FW key performance indicators (KPIs) and monitoring tools. The research identified 22 KPIs, categorized into three levels of the FSC: primary, secondary and tertiary. The most common KPIs included FW per capita, FW per portion and FW percentage. The study further discusses FW prevention measures and essential monitoring tools for addressing FW throughout the supply chain.


Subject(s)
Food Loss and Waste , Food Supply , European Union , Garbage , Waste Management/methods
2.
Waste Manag Res ; 41(12): 1741-1753, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37602734

ABSTRACT

There are several sustainability issues that the linear economy of today's society cannot adequately tackle (i.e. resource depletion, waste treatment, etc.). As a result, the scientific community and policymakers give high priority to the implementation of the circular economy concept. The sustainable development goals of the United Nations are in line with the European Union's (EU) commitment to a smooth transition to a circular economy. Circular business models require a shift in technical elements involving R strategies to replace traditional business models (i.e. reuse, reduce, recycle, etc.). Monitoring circular economy to provide quantifiable, measurable data is necessary for a successful transition. Monitoring tools (i.e. Key Performance Indicators, quality protocols) enable decision-makers to measure circular economy performance and identify circularity's advantages and disadvantages. To stimulate the adoption of a circularity model addressing critical issues of excessive waste production and resource use, this mini review aims to address the literature gap of waste metrics in the framework of circular economy and offer insights on circular economy indicators to aid for a seamless transition to a more sustainable society. For this purpose, Preferred Reporting Items for Systematic Reviews and Meta-Analysis method was chosen to assess literature. The authors collected and analysed data from 101 records, 70 articles and 31 reports related to the topic under consideration. Through the literature review, it is obvious that moving away from linear production model frequently leads to the development of new internal capabilities along the value chain and, eventually, high efficiency that reduces costs, increasing productivity, encourages brand names, minimizes threats, creates new products and fulfils regulations and green consumer expectations.


Subject(s)
Waste Management , Recycling
3.
Bioresour Technol ; 376: 128908, 2023 May.
Article in English | MEDLINE | ID: mdl-36934908

ABSTRACT

This work examines the continuous addition (5 g/L) of conductive granular activated carbon (GAC) in an integrated pilot-scale unit containing an anaerobic digester (180 L) and an aerobic submerged membrane bioreactor (1600 L) connected in series for the treatment of agro-industrial wastewater. Biogas production increased by 32 % after the addition of GAC. Methanosaeta was the dominant methanogen in the digester, and its relative abundance increased after the addition of GAC. The final effluent after post-treatment with the aerobic membrane bioreactor had a total solids content <0.01 g/L and a chemical oxygen demand between 120 and 150 mg/L. A simple cost analysis showed that GAC addition is potentially profitable, but alternatives ways of retaining the GAC in the system need to be found. Overall, this study provides useful scientific data for the possible application of GAC in full-scale biogas projects.


Subject(s)
Charcoal , Wastewater , Charcoal/chemistry , Waste Disposal, Fluid , Biofuels , Anaerobiosis , Bioreactors , Methane
4.
Article in English | MEDLINE | ID: mdl-36231592

ABSTRACT

The circular economy paradigm can be beneficial for urban sustainability by eliminating waste and pollution, by circulating products and materials and by regenerating nature. Furthermore, under an urban circular development scheme, environmental noise can be designed out. The current noise control policies and actions, undertaken at a source-medium-receiver level, present a linearity with minimum sustainability co-benefits. A circular approach in noise control strategies and in soundscape design could offer numerous ecologically related co-benefits. The global literature documenting the advantages of the implementation of circular economy in cities has highlighted noise mitigation as a given benefit. Research involving circular economy actions such as urban green infrastructure, green walls, sustainable mobility systems and electro-mobility has acknowledged reduced noise levels as a major circularity outcome. In this research paper, we highlight the necessity of a circularity and bioeconomy approach in noise control. To this end, a preliminary experimental noise modeling study was conducted to showcase the acoustic benefits of green walls and electric vehicles in a medium-sized urban area of a Mediterranean island. The results indicate a noise level reduction at 4 dB(A) when simulating the introduction of urban circular development actions.


Subject(s)
Sound , Sustainable Growth , Acoustics , Cities , Noise/prevention & control
6.
Article in English | MEDLINE | ID: mdl-27973987

ABSTRACT

An investigation into the occurrence of priority substances regulated by 2000/60/EC Water Framework Directive and 2008/105/EC Directive was conducted for a period of one year in the surface water sources supplying the water treatment plants (WTPs) of Athens and in the raw water of WTPs. Samples from four reservoirs and four water treatment plants of Athens were taken seasonally. The substances are divided into seven specific groups, including eight volatile organic compounds (VOCs), diethylhexylphthalate, four organochlorine pesticides (OCPs), three organophosphorus/organonitrogen pesticides (OPPs/ONPs), four triazines and phenylurea herbicides, pentachlorophenol, and four metals. The aforementioned substances belong to different chemical categories, and different analytical methods were performed for their determination. The results showed that the surface waters that feed the WTPs of Athens are not burdened with significant levels of toxic substances identified as European Union (EU) priority substances. Atrazine, hexachlorocyclohexane, endosulfan, trifluralin, anthracene and 4-nonylphenol were occasionally observed at very low concentrations. Their presence in a limited number of cases could be attributed to waste disposal, agricultural activities, and to a limited industrial activity in the area nearby the water bodies.


Subject(s)
Environmental Monitoring/standards , Hydrocarbons, Chlorinated/analysis , Organophosphorus Compounds/analysis , Pesticides/analysis , Volatile Organic Compounds/analysis , Water Pollutants, Chemical/analysis , Water Purification/standards , European Union , Greece , Hydrocarbons, Chlorinated/chemistry , Pesticides/chemistry , Volatile Organic Compounds/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods
7.
Environ Int ; 30(8): 995-1007, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15337345

ABSTRACT

The pollution of the surface waters of Greece from the priority compounds of 76/464/EEC Directive was evaluated. The occurrence of 92 toxic compounds, 64 of which belong to priority compounds of List II, candidates for List I, of 76/464/EEC Directive, was studied in surface waters and wastewater through the developed network of 62 sampling stations, which covers the whole Greek territory. The analytical determination was performed by Purge and Trap-Gas chromatography-Mass spectrometry for volatile and semivolatile organic compounds (VOCs), Gas Chromatography-Electron Capture Detection for organochlorine insecticides, Gas Chromatography-Nitrogen Phosphorous Detection for organophosphorous insecticides, High Performance Liquid Chromatography-Photodiode Array Detection for herbicides, and Electrothermal Atomic Absorption Spectrophotometry and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) for metals and the toluene extractable organotin compounds. The concentrations of VOCs and insecticides detected in the surface waters of Greece were very low, whereas the concentrations of herbicides and metals ranged generally at moderate levels. VOCs were detected almost exclusively in the rivers and very rarely in the lakes, while the frequency of occurrence of insecticides, herbicides and metals was similar for rivers and lakes. Water quality objectives (WQO) and emission limit values (ELV) have been laid down in national legal framework for a number of compounds detected in the samples, in order to safeguard the quality of surface waters from any future deterioration.


Subject(s)
Water Pollutants, Chemical/analysis , Water Supply/standards , Environment , Environmental Monitoring , Greece
8.
J Environ Monit ; 5(4): 593-7, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12948234

ABSTRACT

The priority substances of List I, 76/464/EEC Directive, some of which belong to the new Water Framework Directive 2000/60/EC, have been monitored in the surface waters of Greece through the developed network of 53 sampling stations. The analytical methods used for the determination of these substances included Purge and Trap-Gas chromatography-Mass spectrometry for volatile and semivolatile organic compounds, Gas Chromatography-Electron Capture Detection for organochlorine insecticides, High Performance Liquid Chromatography for pentachlorophenol and Atomic Absorption Spectrometry for metals. The results have shown the presence of several priority substances in Greek surface waters, in most cases at concentrations well below the regulatory limits. However, non-compliance was observed for a limited number of compounds. The monitoring network and the analytical determinations have to be expanded to more water bodies and more priority substances, in order to safeguard the quality of Greek surface waters.


Subject(s)
Environmental Monitoring/legislation & jurisprudence , Guideline Adherence , Water Pollutants, Chemical/analysis , Environmental Monitoring/standards , Gas Chromatography-Mass Spectrometry , Greece , Humans , Quality Control , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL