Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36768950

ABSTRACT

Malaria is a life-threatening tropical arthropod-borne disease caused by Plasmodium spp. Monocytes are the primary immune cells to eliminate malaria-infected red blood cells. Thus, the monocyte's functions are one of the crucial factors in controlling parasite growth. It is reasoned that the activation or modulation of monocyte function by parasite products might dictate the rate of disease progression. Extracellular vesicles (EVs), microvesicles, and exosomes, released from infected red blood cells, mediate intercellular communication and control the recipient cell function. This study aimed to investigate the physical characteristics of EVs derived from culture-adapted P. falciparum isolates (Pf-EVs) from different clinical malaria outcomes and their impact on monocyte polarization. The results showed that all P. falciparum strains released similar amounts of EVs with some variation in size characteristics. The effect of Pf-EV stimulation on M1/M2 monocyte polarization revealed a more pronounced effect on CD14+CD16+ intermediate monocytes than the CD14+CD16- classical monocytes with a marked induction of Pf-EVs from a severe malaria strain. However, no difference in the levels of microRNAs (miR), miR-451a, miR-486, and miR-92a among Pf-EVs derived from virulent and nonvirulent strains was found, suggesting that miR in Pf-EVs might not be a significant factor in driving M2-like monocyte polarization. Future studies on other biomolecules in Pf-EVs derived from the P. falciparum strain with high virulence that induce M2-like polarization are therefore recommended.


Subject(s)
Extracellular Vesicles , Malaria, Falciparum , Malaria , MicroRNAs , Humans , Monocytes , Plasmodium falciparum , Erythrocytes/parasitology
2.
J Clin Med ; 11(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35888014

ABSTRACT

In infectious diseases, extracellular vesicles (EVs) released from a pathogen or pathogen-infected cells can transfer pathogen-derived biomolecules, especially proteins, to target cells and consequently regulate these target cells. For example, malaria is an important tropical infectious disease caused by Plasmodium spp. Previous studies have identified the roles of Plasmodium falciparum-infected red blood cell-derived EVs (Pf-EVs) in the pathogenesis, activation, and modulation of host immune responses. This study investigated the proteomic profiles of Pf-EVs isolated from four P. falciparum strains. We also compared the proteomes of EVs from (i) different EV types (microvesicles and exosomes) and (ii) different parasite growth stages (early- and late-stage). The proteomic analyses revealed that the human proteins carried in the Pf-EVs were specific to the type of Pf-EVs. By contrast, most of the P. falciparum proteins carried in Pf-EVs were common across all types of Pf-EVs. As the proteomics results revealed that Pf-EVs contained invasion-associated proteins, the effect of Pf-EVs on parasite invasion was also investigated. Surprisingly, the attenuation of parasite invasion efficiency was found with the addition of Pf-MVs. Moreover, this effect was markedly increased in culture-adapted isolates compared with laboratory reference strains. Our evidence supports the concept that Pf-EVs play a role in quorum sensing, which leads to parasite growth-density regulation.

3.
Pathogens ; 11(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35745486

ABSTRACT

Extracellular vesicles (EVs) released from pathogenic protozoans play crucial roles in host-parasite communication and disease pathogenesis. Naegleria fowleri is a free-living protozoan causing primary amoebic meningoencephalitis, a fatal disease in the central nervous system. This study aims to explore the roles of N. fowleri-derived EVs (Nf-EVs) in host-pathogen interactions using the THP-1 cell line as a model. The Nf-EVs were isolated from the N. fowleri trophozoite culture supernatant using sequential centrifugation and characterized by nanoparticle tracking analysis and transmission electron microscopy. The functional roles of Nf-EVs in the apoptosis and immune response induction of THP-1 monocytes and macrophages were examined by flow cytometry, quantitative PCR, and ELISA. Results showed that Nf-EVs displayed vesicles with bilayer membrane structure approximately 130-170 nm in diameter. The Nf-EVs can be internalized by macrophages and induce macrophage responses by induction of the expression of costimulatory molecules CD80, CD86, HLA-DR, and CD169 and the production of cytokine IL-8. However, Nf-EVs did not affect the apoptosis of macrophages. These findings illustrate the potential role of Nf-EVs in mediating the host immune cell activation and disease pathogenesis.

4.
Int J Lab Hematol ; 43(3): 506-514, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33244869

ABSTRACT

INTRODUCTION: Microvesicles (MVs) are bioactive, submicron-sized (0.01-1000 nm) membrane vesicles released from various types of cells under normal physiological and pathophysiological conditions. MVs have emerged as important mediators of cell-to-cell communication in a diverse range of normal and pathological processes. MVs have been recognized as potential biomarkers in coagulation, inflammation, and cancer. However, for clinical use, minimizing factors which could affect enumeration and phenotypic characterization of MVs during pre-analytical steps is crucial. In this study, we used flow cytometry and nanoparticle tracking analysis (NTA) to investigate the impact of blood collection using with and without anticoagulant on the number and phenotype of MVs in blood samples. METHODS: Blood from 30 healthy volunteers was collected by venipuncture into 3.2% sodium citrate and clot activator tubes. MV subpopulations and their concentrations were investigated using flow cytometry and NTA. MV morphology was examined by transmission electron microscopy. RESULTS: Results showed that the concentration of MVs was significantly lower in serum than in plasma and that CD41+ MV, CD41+ /CD62P+ MV, CD45+ MV, and CD142+ MV levels from serum were significantly lower than those from plasma, whereas no significant differences in Annexin V (Anx V)+ MV, CD235a+ MV, and CD144+ MV levels were found. Interestingly, serum MVs had a higher proportion of small-sized MVs and lower proportion of large-sized MVs than did plasma MVs. CONCLUSION: Although plasma samples are commonly used, our results suggest that serum can also be used in enumeration of MVs, but care must be taken if coagulation is an aspect of the research.


Subject(s)
Antigens, CD/analysis , Cell-Derived Microparticles , Flow Cytometry , Adult , Cell-Derived Microparticles/chemistry , Cell-Derived Microparticles/ultrastructure , Female , Humans , Immunophenotyping , Male , Middle Aged , Particle Size , Plasma/chemistry , Serum/chemistry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...