Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(26): 16544-16553, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35754892

ABSTRACT

In the present study, the n-SnO2/p-CuFe2O4 (p-CFO) complex was prepared by a two-step process. p-CFO synthesized by the molten salt method was coated with SnO2 synthesized by a facile in situ chemical precipitation method. The formation of n-SnO2/p-CFO was confirmed by powder X-ray diffraction (PXRD). Scanning electron microscopy (SEM) images showed that the sharp edges of uncoated pyramid-like p-CFO particles were covered by a thick layer of n-SnO2 on coated p-CFO particles. The complete absence of Cu and only 3 wt% Fe on the surface of the n-p complex observed in the elemental analysis using energy-dispersive X-ray spectroscopy (EDX) on the n-p complex confirmed the presence of a thick layer of SnO2 on the p-CFO surface. Diffuse reflectance spectroscopy (DRS) was employed to elucidate the bandgap engineering. The n-SnO2/p-CFO complex and p-CFO showed 87% and 58.7% methylene blue (MB) degradation in 120 min under sunlight, respectively. The efficiency of the n-p complex recovered after 5 cycles (73.5%) and was found to be higher than that of the uncoated p-CFO (58.7%). The magnetically separable property of the n-p complex was evaluated by using vibration sample magnetometry (VSM) measurements and it was confirmed that the prepared photocatalyst can be easily recovered using an external magnet. The study reveals that the prepared complex could be a potential candidate for efficient photodegradation of organic dyes under sunlight due to its efficient recovery and reusability owing to its magnetic properties.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120301, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34461525

ABSTRACT

Thiazole based receptor 3, was designed and synthesized by condensation reactionof5-chlorosalicylaldehyde with 4-(4-phenylthiazol-2-yl)semicarbazide for colorimetric and fluorimetric detection of fluoride ion. Receptor 3 was characterized by 1H NMR, 13C NMR, and HRMS, and shows absorption in 280-400 nm region with emission at 442 nm in tetrahydrofuran (THF). Addition of fluoride ion to the THF solution of receptor 3 results in color change from colorless to yellow with significant change in UV-Visible absorption. The receptor-anion interaction occurs via hydrogen bonding followed by deprotonation which results in large bathochromic shift in absorption spectra and naked-eye color change. The colorimetric changes show selective response for fluoride ions over other anions. Fluorescence studies exhibit remarkable enhancement in emission intensity upon addition of fluoride ion with a limit of detection (LOD) of 8.6 nM. The 1H NMR titration studies exhibit deprotonation of the -OH proton of the salicylaldimine moiety resulting significant colorimetric and fluorimetric changes.


Subject(s)
Colorimetry , Fluorides , Anions , Fluorometry , Thiazoles
3.
Artif Cells Nanomed Biotechnol ; 45(3): 625-634, 2017 May.
Article in English | MEDLINE | ID: mdl-27067993

ABSTRACT

In this work, we designed an amperometric catechol biosensor based on α-Fe2O3 nanocrystals (NCs) incorporated carbon-paste electrode. Laccase enzyme is then assembled onto the modified electrode surface to form a nanobiocomposite enhancing the electron transfer reactions at the enzyme's active metal centers for catechol oxidation. The biosensor gave good sensitivity with a linear detection response in the range of 8-800 µM with limit of detection 4.28 µM. We successfully employed the sensor for real water sample analysis. The results illustrate that the metal oxide NCs have enormous potential in the construction of biosensors for sensitive determination of phenol derivatives.


Subject(s)
Biosensing Techniques/methods , Carbon/chemistry , Catechols/analysis , Ferric Compounds/chemistry , Water Pollutants, Chemical/analysis , Electrochemical Techniques , Electrodes , Electron Transport , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/isolation & purification , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Humans , Laccase/chemistry , Laccase/isolation & purification , Limit of Detection , Metal Nanoparticles/chemistry , Oxidation-Reduction , Trametes/chemistry , Trametes/enzymology , Water/chemistry
4.
Phys Rev Lett ; 98(1): 016601, 2007 Jan 05.
Article in English | MEDLINE | ID: mdl-17358495

ABSTRACT

Electron spin-polarized tunneling is observed through an ultrathin layer of the molecular organic semiconductor tris(8-hydroxyquinolinato)aluminum (Alq3). Significant tunnel magnetoresistance (TMR) was measured in a Co/Al2O3/Alq3/NiFe magnetic tunnel junction at room temperature, which increased when cooled to low temperatures. Tunneling characteristics, such as the current-voltage behavior and temperature and bias dependence of the TMR, show the good quality of the organic tunnel barrier. Spin polarization (P) of the tunnel current through the Alq3 layer, directly measured using superconducting Al as the spin detector, shows that minimizing formation of an interfacial dipole layer between the metal electrode and organic barrier significantly improves spin transport.

SELECTION OF CITATIONS
SEARCH DETAIL
...