Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Nano Lett ; 16(11): 6733-6737, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27706936

ABSTRACT

The transport length ltr and the mean free path le are determined for bulk and surface states in a Bi2Se3 nanoribbon by quantum transport and transconductance measurements. We show that the anisotropic scattering of spin-helical Dirac fermions results in a strong enhancement of ltr (≈ 200 nm) and of the related mobility µtr (≈ 4000 cm2 V-1 s-1), which confirms theoretical predictions.1 Despite strong disorder, the long-range nature of the scattering potential gives a large ratio ltr/le ≈ 8, likely limited by bulk/surface coupling. This suggests that the spin-flip length lsf ≈ ltr could reach the micron size in materials with a reduced bulk doping and paves the way for building functionalized spintronic and ballistic electronic devices out of disordered 3D topological insulators.

3.
J Magn Reson ; 270: 183-186, 2016 09.
Article in English | MEDLINE | ID: mdl-27498338

ABSTRACT

In this work we introduce a new method, which employs commercial piezo-cantilevers, for a ferromagnetic resonance (FMR) detection from thin, nm-size, films. Our setup has an option to rotate the sample in the magnetic field and it operates up to the high microwave frequencies of 160GHz. Using our cantilever based FMR spectrometer we have investigated a set of samples, namely quasi-bulk and 84nm film Co2FeAl0.5Si0.5 samples, 16nm Fe50Ni50 film and 150nm Sr2FeMoO6 film. Low frequency and room temperature test of our setup using 84nm Co2FeAl0.5Si0.5 film yielded a result identical to a standard X-Band spectrometer, namely a single line with quite small linewidth. Our measurements at low temperatures and high frequencies revealed a quite strong FMR response detected in all samples. The FMR spectra share common features, such as the emergence of the second line with an opposite angular dependence, and a drastic increase of the linewidths with increasing microwave frequency. We believe that these findings are results of the complicated dynamics of the magnetization at low temperatures and high frequencies, which we were able to probe using our cantilever based FMR setup.

SELECTION OF CITATIONS
SEARCH DETAIL
...