Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 08 17.
Article in English | MEDLINE | ID: mdl-34402429

ABSTRACT

The development of binocular vision is an active learning process comprising the development of disparity tuned neurons in visual cortex and the establishment of precise vergence control of the eyes. We present a computational model for the learning and self-calibration of active binocular vision based on the Active Efficient Coding framework, an extension of classic efficient coding ideas to active perception. Under normal rearing conditions with naturalistic input, the model develops disparity tuned neurons and precise vergence control, allowing it to correctly interpret random dot stereograms. Under altered rearing conditions modeled after neurophysiological experiments, the model qualitatively reproduces key experimental findings on changes in binocularity and disparity tuning. Furthermore, the model makes testable predictions regarding how altered rearing conditions impede the learning of precise vergence control. Finally, the model predicts a surprising new effect that impaired vergence control affects the statistics of orientation tuning in visual cortical neurons.


Subject(s)
Computer Simulation , Vision, Binocular/physiology , Visual Cortex , Humans , Models, Biological , Retinal Ganglion Cells/physiology , Visual Cortex/cytology , Visual Cortex/growth & development , Visual Cortex/physiology
2.
Front Neurorobot ; 13: 49, 2019.
Article in English | MEDLINE | ID: mdl-31379548

ABSTRACT

We present a model for the autonomous and simultaneous learning of active binocular and motion vision. The model is based on the Active Efficient Coding (AEC) framework, a recent generalization of classic efficient coding theories to active perception. The model learns how to efficiently encode the incoming visual signals generated by an object moving in 3-D through sparse coding. Simultaneously, it learns how to produce eye movements that further improve the efficiency of the sensory coding. This learning is driven by an intrinsic motivation to maximize the system's coding efficiency. We test our approach on the humanoid robot iCub using simulations. The model demonstrates self-calibration of accurate object fixation and tracking of moving objects. Our results show that the model keeps improving until it hits physical constraints such as camera or motor resolution, or limits on its internal coding capacity. Furthermore, we show that the emerging sensory tuning properties are in line with results on disparity, motion, and motion-in-depth tuning in the visual cortex of mammals. The model suggests that vergence and tracking eye movements can be viewed as fundamentally having the same objective of maximizing the coding efficiency of the visual system and that they can be learned and calibrated jointly through AEC.

SELECTION OF CITATIONS
SEARCH DETAIL
...