Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(8): 4857-4869, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33821636

ABSTRACT

LONP1 is an AAA+ protease that maintains mitochondrial homeostasis by removing damaged or misfolded proteins. Elevated activity and expression of LONP1 promotes cancer cell proliferation and resistance to apoptosis-inducing reagents. Despite the importance of LONP1 in human biology and disease, very few LONP1 inhibitors have been described in the literature. Herein, we report the development of selective boronic acid-based LONP1 inhibitors using structure-based drug design as well as the first structures of human LONP1 bound to various inhibitors. Our efforts led to several nanomolar LONP1 inhibitors with little to no activity against the 20S proteasome that serve as tool compounds to investigate LONP1 biology.


Subject(s)
ATP-Dependent Proteases/antagonists & inhibitors , Drug Design , Mitochondrial Proteins/antagonists & inhibitors , Protease Inhibitors/chemistry , ATP-Dependent Proteases/metabolism , Binding Sites , Boronic Acids/chemistry , Boronic Acids/metabolism , Boronic Acids/pharmacology , Bortezomib/chemistry , Bortezomib/metabolism , Cell Line , Cell Survival/drug effects , Humans , Mitochondrial Proteins/metabolism , Molecular Docking Simulation , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Protein Subunits/antagonists & inhibitors , Protein Subunits/metabolism , Structure-Activity Relationship
2.
Virology ; 540: 195-206, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31929001

ABSTRACT

Respiratory syncytial virus (RSV) infection can cause mucus overproduction and bronchiolitis in infants leading to severe disease and hospitalization. As a therapeutic strategy, immune modulatory agents may help prevent RSV-driven immune responses that cause severe airway disease. We developed a high throughput screen to identify compounds that reduced RSV-driven mucin 5AC (Muc5AC) expression and identified dexamethasone. Despite leading to a pronounced reduction in RSV-driven Muc5AC, dexamethasone increased RSV infection in vitro and delayed viral clearance in mice. This correlated with reduced expression of a subset of immune response genes and reduced lymphocyte infiltration in vivo. Interestingly, dexamethasone increased RSV infection levels without altering antiviral interferon signaling. In summary, the immunosuppressive activities of dexamethasone had favorable inhibitory effects on RSV-driven mucus production yet prevented immune defense activities that limit RSV infection in vitro and in vivo. These findings offer an explanation for the lack of efficacy of glucocorticoids in RSV-infected patients.


Subject(s)
Dexamethasone/pharmacology , Interferons/metabolism , Mucus/metabolism , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/drug effects , Signal Transduction/drug effects , Virus Replication/drug effects , Animals , Cell Line , Cytokines/metabolism , Gene Regulatory Networks , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Mice , Mucin 5AC/genetics , Mucin 5AC/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Respiratory Syncytial Virus Infections/genetics
3.
J Mol Graph Model ; 89: 234-241, 2019 06.
Article in English | MEDLINE | ID: mdl-30921557

ABSTRACT

In drug discovery, structural knowledge of a target enables structure-based design approaches and thereby reduces the time and labor required to develop a therapy. Whilst molecular graphics frameworks coupled with computational analysis are now ubiquitous tools for the structural and computational biologist, sharing the detailed visualization and derived structural information with non-expert users still presents a challenge. Here we describe an intuitive virtual world for viewing, manipulating, and modifying chemical and macromolecular structures in a fully immersive and collaborative 3D environment. By reducing the barriers to viewing and interacting with structural data, structural analysis can be democratized to a general scientist, which in turn fosters novel collaboration, ideas, and findings in structural biology and structure-based drug discovery.


Subject(s)
Drug Discovery , Quantitative Structure-Activity Relationship , Virtual Reality , Binding Sites , Computational Biology , Drug Design , Humans , Ligands , Protein Binding , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinase 2/chemistry , Software , User-Computer Interface
4.
J Med Chem ; 59(14): 6671-89, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27433829

ABSTRACT

Over the past decade, first and second generation EGFR inhibitors have significantly improved outcomes for lung cancer patients with activating mutations in EGFR. However, both resistance through a secondary T790M mutation at the gatekeeper residue and dose-limiting toxicities from wild-type (WT) EGFR inhibition ultimately limit the full potential of these therapies to control mutant EGFR-driven tumors and new therapies are urgently needed. Herein, we describe our approach toward the discovery of 47 (EGF816, nazartinib), a novel, covalent mutant-selective EGFR inhibitor with equipotent activity on both oncogenic and T790M-resistant EGFR mutations. Through molecular docking studies we converted a mutant-selective high-throughput screening hit (7) into a number of targeted covalent EGFR inhibitors with equipotent activity across mutants EGFR and good WT-EGFR selectivity. We used an abbreviated in vivo efficacy study for prioritizing compounds with good tolerability and efficacy that ultimately led to the selection of 47 as the clinical candidate.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Discovery , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Nicotine/analogs & derivatives , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Molecular , Molecular Conformation , Mutation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Nicotine/chemical synthesis , Nicotine/chemistry , Nicotine/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Rats , Rats, Wistar , Structure-Activity Relationship
5.
Nature ; 534(7605): 129-32, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27251290

ABSTRACT

The epidermal growth factor receptor (EGFR)-directed tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved treatments for non-small cell lung cancers harbouring activating mutations in the EGFR kinase, but resistance arises rapidly, most frequently owing to the secondary T790M mutation within the ATP site of the receptor. Recently developed mutant-selective irreversible inhibitors are highly active against the T790M mutant, but their efficacy can be compromised by acquired mutation of C797, the cysteine residue with which they form a key covalent bond. All current EGFR TKIs target the ATP-site of the kinase, highlighting the need for therapeutic agents with alternative mechanisms of action. Here we describe the rational discovery of EAI045, an allosteric inhibitor that targets selected drug-resistant EGFR mutants but spares the wild-type receptor. The crystal structure shows that the compound binds an allosteric site created by the displacement of the regulatory C-helix in an inactive conformation of the kinase. The compound inhibits L858R/T790M-mutant EGFR with low-nanomolar potency in biochemical assays. However, as a single agent it is not effective in blocking EGFR-driven proliferation in cells owing to differential potency on the two subunits of the dimeric receptor, which interact in an asymmetric manner in the active state. We observe marked synergy of EAI045 with cetuximab, an antibody therapeutic that blocks EGFR dimerization, rendering the kinase uniformly susceptible to the allosteric agent. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by EGFR(L858R/T790M) and by EGFR(L858R/T790M/C797S), a mutant that is resistant to all currently available EGFR TKIs. More generally, our findings illustrate the utility of purposefully targeting allosteric sites to obtain mutant-selective inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Benzeneacetamides/pharmacology , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Mutant Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Thiazoles/pharmacology , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cetuximab/pharmacology , Disease Models, Animal , Drug Resistance, Multiple/drug effects , Drug Resistance, Multiple/genetics , Drug Resistance, Neoplasm/drug effects , Drug Synergism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Conformation/drug effects , Protein Multimerization/drug effects
6.
Cancer Res ; 76(6): 1591-602, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26825170

ABSTRACT

Non-small cell lung cancer patients carrying oncogenic EGFR mutations initially respond to EGFR-targeted therapy, but later elicit minimal response due to dose-limiting toxicities and acquired resistance. EGF816 is a novel, irreversible mutant-selective EGFR inhibitor that specifically targets EGFR-activating mutations arising de novo and upon resistance acquisition, while sparing wild-type (WT) EGFR. EGF816 potently inhibited the most common EGFR mutations L858R, Ex19del, and T790M in vitro, which translated into strong tumor regressions in vivo in several patient-derived xenograft models. Notably, EGF816 also demonstrated antitumor activity in an exon 20 insertion mutant model. At levels above efficacious doses, EGF816 treatment led to minimal inhibition of WT EGFR and was well tolerated. In single-dose studies, EGF816 provided sustained inhibition of EGFR phosphorylation, consistent with its ability for irreversible binding. Furthermore, combined treatment with EGF816 and INC280, a cMET inhibitor, resulted in durable antitumor efficacy in a xenograft model that initially developed resistance to first-generation EGFR inhibitors via cMET activation. Thus, we report the first preclinical characterization of EGF816 and provide the groundwork for its current evaluation in phase I/II clinical trials in patients harboring EGFR mutations, including T790M.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Mutation/drug effects , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Female , Lung Neoplasms/metabolism , Mice , Mice, Nude , Phosphorylation/drug effects , Rats , Xenograft Model Antitumor Assays/methods
7.
Bioorg Med Chem Lett ; 24(23): 5478-83, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25455488

ABSTRACT

Systematic SAR optimization of the GPR119 agonist lead 1, derived from an internal HTS campaign, led to compound 29. Compound 29 displays significantly improved in vitro activity and oral exposure, leading to GLP1 elevation in acutely dosed mice and reduced glucose excursion in an OGTT study in rats at doses ⩾10 mg/kg.


Subject(s)
Pyrimidines/chemical synthesis , Receptors, G-Protein-Coupled/drug effects , Animals , Drug Discovery , Mice , Molecular Structure , Rats , Structure-Activity Relationship
8.
J Mass Spectrom ; 40(6): 777-84, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15827968

ABSTRACT

We present an improvement of the titration method for binding constant determination with electrospray ionization (ESI) mass spectrometry that is unaffected by differences in ESI response of measured species in solution. The method consists of a calibration and titration, both using an internal standard that allows relative quantitation. This avoids artifacts such as a decrease in overall signal intensity with increasing ligand concentrations, rendering this approach more reliable and meaningful than direct evaluation of ESI peak intensities. We demonstrate the de novo binding constant determination of novel zinc binding beta-peptides, which have been synthesized with the goal of creating secondary structures stabilized by metal complexation.


Subject(s)
Oligopeptides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Zinc/chemistry , Protein Binding , Protein Conformation
9.
Biopolymers ; 76(3): 206-43, 2004.
Article in English | MEDLINE | ID: mdl-15148683

ABSTRACT

Although they are less abundant than their alpha-analogues, beta-amino acids occur in nature both in free form and bound to peptides. Oligomers composed exclusively of beta-amino acids (so-called beta-peptides) might be the most thoroughly investigated peptidomimetics. Beside the facts that they are stable to metabolism, exhibit slow microbial degradation, and are inherently stable to proteases and peptidases, they fold into well-ordered secondary structures consisting of helices, turns, and sheets. In this respect, the most intriguing effects have been observed when beta2-amino acids are present in the beta-peptide backbone. This review gives an overview of the occurrence and importance of beta2-amino acids in nature, placing emphasis on the metabolic pathways of beta-aminoisobutyric acid (beta-Aib) and the appearance of beta2-amino acids as secondary metabolites or as components of more complex natural products, such as peptides, depsipeptides, lactones, and alkaloids. In addition, a compilation of the syntheses of both achiral and chiral beta2-amino acids is presented. While there are numerous routes to achiral beta2-amino acids, their EPC synthesis is currently the subject of many investigations. These include the diastereoselective alkylation and Mannich-type reactions of cyclic- or acyclic beta-homoglycine derivatives containing chiral auxiliaries, the Curtius degradation, the employment of transition-metal catalyzed reactions such as enantioselective hydrogenations, reductions, C-H insertions, and Michael-type additions, and the resolution of rac. beta2-amino acids, as well as several miscellaneous methods. In the last part of the review, the importance of beta2-amino acids in the formation of beta-peptide secondary structures is discussed.


Subject(s)
Amino Acids/chemical synthesis , Oligopeptides/chemistry , Amino Acids/chemistry , Amino Acids/metabolism , Models, Molecular , Oligopeptides/chemical synthesis , Protein Structure, Secondary , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...