Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
NAR Genom Bioinform ; 5(4): lqad104, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38058589

ABSTRACT

The functions of eukaryotic chromosomes and their spatial architecture in the nucleus are reciprocally dependent. Hi-C experiments are routinely used to study chromosome 3D organization by probing chromatin interactions. Standard representation of the data has relied on contact maps that show the frequency of interactions between parts of the genome. In parallel, it has become easier to build 3D models of the entire genome based on the same Hi-C data, and thus benefit from the methodology and visualization tools developed for structural biology. 3D modeling of entire genomes leverages the understanding of their spatial organization. However, this opportunity for original and insightful modeling is underexploited. In this paper, we show how seeing the spatial organization of chromosomes can bring new perspectives to omics data integration. We assembled state-of-the-art tools into a workflow that goes from Hi-C raw data to fully annotated 3D models and we re-analysed public omics datasets available for three fungal species. Besides the well-described properties of the spatial organization of their chromosomes (Rabl conformation, hypercoiling and chromosome territories), our results highlighted (i) in Saccharomyces cerevisiae, the backbones of the cohesin anchor regions, which were aligned all along the chromosomes, (ii) in Schizosaccharomyces pombe, the oscillations of the coiling of chromosome arms throughout the cell cycle and (iii) in Neurospora crassa, the massive relocalization of histone marks in mutants of heterochromatin regulators. 3D modeling of the chromosomes brings new opportunities for visual integration of omics data. This holistic perspective supports intuition and lays the foundation for building new concepts.

2.
Nucleic Acids Res ; 51(22): 12337-12351, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37953377

ABSTRACT

Multinucleate cells are found in many eukaryotes, but how multiple nuclei coordinate their functions is still poorly understood. In the cytoplasm of the ciliate Paramecium tetraurelia, two micronuclei (MIC) serving sexual reproduction coexist with a somatic macronucleus (MAC) dedicated to gene expression. During sexual processes, the MAC is progressively destroyed while still ensuring transcription, and new MACs develop from copies of the zygotic MIC. Several gene clusters are successively induced and switched off before vegetative growth resumes. Concomitantly, programmed genome rearrangement (PGR) removes transposons and their relics from the new MACs. Development of the new MACs is controlled by the old MAC, since the latter expresses genes involved in PGR, including the PGM gene encoding the essential PiggyMac endonuclease that cleaves the ends of eliminated sequences. Using RNA deep sequencing and transcriptome analysis, we show that impairing PGR upregulates key known PGR genes, together with ∼600 other genes possibly also involved in PGR. Among these genes, 42% are no longer induced when no new MACs are formed, including 180 genes that are co-expressed with PGM under all tested conditions. We propose that bi-directional crosstalk between the two coexisting generations of MACs links gene expression to the progression of MAC development.


Subject(s)
Paramecium tetraurelia , Gene Expression , Gene Rearrangement , Genome , Paramecium tetraurelia/cytology , Paramecium tetraurelia/genetics , Macronucleus
3.
J Proteome Res ; 22(3): 996-1002, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36748112

ABSTRACT

The simple light isotope metabolic-labeling technique relies on the in vivo biosynthesis of amino acids from U-[12C]-labeled molecules provided as the sole carbon source. The incorporation of the resulting U-[12C]-amino acids into proteins presents several key advantages for mass-spectrometry-based proteomics analysis, as it results in more intense monoisotopic ions, with a better signal-to-noise ratio in bottom-up analysis. In our initial studies, we developed the simple light isotope metabolic (SLIM)-labeling strategy using prototrophic eukaryotic microorganisms, the yeasts Candida albicans and Saccharomyces cerevisiae, as well as strains with genetic markers that lead to amino-acid auxotrophy. To extend the range of SLIM-labeling applications, we evaluated (i) the incorporation of U-[12C]-glucose into proteins of human cells grown in a complex RPMI-based medium containing the labeled molecule, considering that human cell lines require a large number of essential amino-acids to support their growth, and (ii) an indirect labeling strategy in which the nematode Caenorhabditis elegans grown on plates was fed U-[12C]-labeled bacteria (Escherichia coli) and the worm proteome analyzed for 12C incorporation into proteins. In both cases, we were able to demonstrate efficient incorporation of 12C into the newly synthesized proteins, opening the way for original approaches in quantitative proteomics.


Subject(s)
Caenorhabditis elegans , Proteome , Animals , Humans , Caenorhabditis elegans/genetics , Proteome/analysis , Escherichia coli/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Amino Acids/metabolism , Cell Line , Isotopes , Isotope Labeling/methods
4.
BMC Genomics ; 23(1): 859, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36581831

ABSTRACT

BACKGROUND: Publicly available RNA-seq datasets are often underused although being helpful to improve functional annotation of eukaryotic genomes. This is especially true for filamentous fungi genomes which structure differs from most well annotated yeast genomes. Podospora anserina is a filamentous fungal model, which genome has been sequenced and annotated in 2008. Still, the current annotation lacks information about cis-regulatory elements, including promoters, transcription starting sites and terminators, which are instrumental to integrate epigenomic features into global gene regulation strategies. RESULTS: Here we took advantage of 37 RNA-seq experiments that were obtained in contrasted developmental and physiological conditions, to complete the functional annotation of P. anserina genome. Out of the 10,800 previously annotated genes, 5'UTR and 3'UTR were defined for 7554, among which, 3328 showed differential transcriptional signal starts and/or transcriptional end sites. In addition, alternative splicing events were detected for 2350 genes, mostly due alternative 3'splice sites and 1732 novel transcriptionally active regions (nTARs) in unannotated regions were identified. CONCLUSIONS: Our study provides a comprehensive genome-wide functional annotation of P. anserina genome, including chromatin features, cis-acting elements such as UTRs, alternative splicing events and transcription of non-coding regions. These new findings will likely improve our understanding of gene regulation strategies in compact genomes, such as those of filamentous fungi. Characterization of alternative transcripts and nTARs paves the way to the discovery of putative new genes, alternative peptides or regulatory non-coding RNAs.


Subject(s)
Podospora , Molecular Sequence Annotation , RNA-Seq , Podospora/genetics , Base Sequence , Alternative Splicing
5.
Methods Mol Biol ; 2477: 275-292, 2022.
Article in English | MEDLINE | ID: mdl-35524123

ABSTRACT

Simple light isotope metabolic labeling (bSLIM) is an innovative method to accurately quantify differences in protein abundance at the proteome level in standard bottom-up experiments. The quantification process requires computation of the ratio of intensity of several isotopologs in the isotopic cluster of every identified peptide. Thus, appropriate bioinformatic workflows are required to extract the signals from the instrument files and calculate the required ratio to infer peptide/protein abundance. In a previous study (Sénécaut et al., J Proteome Res 20:1476-1487, 2021), we developed original open-source workflows based on OpenMS nodes implemented in a KNIME working environment. Here, we extend the use of the bSLIM labeling strategy in quantitative proteomics by presenting an alternative procedure to extract isotopolog intensities and process them by taking advantage of new functionalities integrated into the Minora node of Proteome Discoverer 2.4 software. We also present a graphical strategy to evaluate the statistical robustness of protein quantification scores and calculate the associated false discovery rates (FDR). We validated these approaches in a case study in which we compared the differences between the proteomes of two closely related yeast strains.


Subject(s)
Proteome , Proteomics , Isotope Labeling/methods , Peptides/metabolism , Proteomics/methods , Saccharomyces cerevisiae/metabolism
6.
Methods Mol Biol ; 2477: 457-471, 2022.
Article in English | MEDLINE | ID: mdl-35524132

ABSTRACT

Omics data are very valuable for researchers in biology, but the work required to develop a solid expertise in their analysis contrasts with the rapidity with which the omics technologies evolve. Data accumulate in public databases, and despite significant advances in bioinformatics softwares to integrate them, data analysis remains a burden for those who perform experiments. Beyond the issue of dealing with a very large number of results, we believe that working with omics data requires a change in the way scientific problems are solved. In this chapter, we explain pitfalls and tips we found during our functional genomics projects in yeasts. Our main lesson is that, if applying a protocol does not guarantee a successful project, following simple rules can help to become strategic and intentional, thus avoiding an endless drift into an ocean of possibilities.


Subject(s)
Computational Biology , Genomics , Computational Biology/methods , Databases, Factual , Genomics/methods , Software
7.
BMC Res Notes ; 15(1): 67, 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35183229

ABSTRACT

OBJECTIVES: Transcriptional regulatory modules are usually modelled via a network, in which nodes correspond to genes and edges correspond to regulatory associations between them. In the model yeast Saccharomyces cerevisiae, the topological properties of such a network are well-described (distribution of degrees, hierarchical levels, organization in network motifs, etc.). To go further on this, our aim was to search for additional information resulting from the new combination of classical representations of transcriptional regulatory networks with more realistic models of the spatial organization of S. cerevisiae genome in the nucleus. RESULTS: Taking advantage of independent studies with high-quality datasets, i.e. lists of target genes for specific transcription factors and chromosome positions in a three dimensional space representing the nucleus, particular spatial co-localizations of genes that shared common regulatory mechanisms were searched. All transcriptional modules of S. cerevisiae, as described in the latest release of the YEASTRACT database were analyzed and significant biases toward co-localization for a few sets of target genes were observed. To help other researchers to reproduce such analysis with any list of genes of their interest, an interactive web tool called 3D-Scere ( https://3d-scere.ijm.fr/ ) is provided.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Gene Expression Regulation, Fungal , Gene Regulatory Networks , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Cells ; 10(10)2021 09 25.
Article in English | MEDLINE | ID: mdl-34685516

ABSTRACT

Numerous genes are overexpressed in the radioresistant bacterium Deinococcus radiodurans after exposure to radiation or prolonged desiccation. It was shown that the DdrO and IrrE proteins play a major role in regulating the expression of approximately twenty genes. The transcriptional repressor DdrO blocks the expression of these genes under normal growth conditions. After exposure to genotoxic agents, the IrrE metalloprotease cleaves DdrO and relieves gene repression. At present, many questions remain, such as the number of genes regulated by DdrO. Here, we present the first ChIP-seq analysis performed at the genome level in Deinococcus species coupled with RNA-seq, which was achieved in the presence or not of DdrO. We also resequenced our laboratory stock strain of D. radiodurans R1 ATCC 13939 to obtain an accurate reference for read alignments and gene expression quantifications. We highlighted genes that are directly under the control of this transcriptional repressor and showed that the DdrO regulon in D. radiodurans includes numerous other genes than those previously described, including DNA and RNA metabolism proteins. These results thus pave the way to better understand the radioresistance pathways encoded by this bacterium and to compare the stress-induced responses mediated by this pair of proteins in diverse bacteria.


Subject(s)
Deinococcus/metabolism , Gene Expression Regulation, Bacterial/physiology , Regulon/genetics , Transcription Factors/metabolism , Bacterial Proteins/metabolism , DNA Damage/genetics , Deinococcus/genetics , Genomics , Regulon/physiology
9.
J Proteome Res ; 20(3): 1476-1487, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33573382

ABSTRACT

Simple light isotope metabolic labeling (SLIM labeling) is an innovative method to quantify variations in the proteome based on an original in vivo labeling strategy. Heterotrophic cells grown in U-[12C] as the sole source of carbon synthesize U-[12C]-amino acids, which are incorporated into proteins, giving rise to U-[12C]-proteins. This results in a large increase in the intensity of the monoisotope ion of peptides and proteins, thus allowing higher identification scores and protein sequence coverage in mass spectrometry experiments. This method, initially developed for signal processing and quantification of the incorporation rate of 12C into peptides, was based on a multistep process that was difficult to implement for many laboratories. To overcome these limitations, we developed a new theoretical background to analyze bottom-up proteomics data using SLIM-labeling (bSLIM) and established simple procedures based on open-source software, using dedicated OpenMS modules, and embedded R scripts to process the bSLIM experimental data. These new tools allow computation of both the 12C abundance in peptides to follow the kinetics of protein labeling and the molar fraction of unlabeled and 12C-labeled peptides in multiplexing experiments to determine the relative abundance of proteins extracted under different biological conditions. They also make it possible to consider incomplete 12C labeling, such as that observed in cells with nutritional requirements for nonlabeled amino acids. These tools were validated on an experimental dataset produced using various yeast strains of Saccharomyces cerevisiae and growth conditions. The workflows are built on the implementation of appropriate calculation modules in a KNIME working environment. These new integrated tools provide a convenient framework for the wider use of the SLIM-labeling strategy.


Subject(s)
Proteome , Proteomics , Amino Acid Sequence , Isotope Labeling , Mass Spectrometry
10.
NAR Genom Bioinform ; 2(2): lqaa027, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33575583

ABSTRACT

Candida glabrata is a cause of life-threatening invasive infections especially in elderly and immunocompromised patients. Part of human digestive and urogenital microbiota, C. glabrata faces varying iron availability, low during infection or high in digestive and urogenital tracts. To maintain its homeostasis, C. glabrata must get enough iron for essential cellular processes and resist toxic iron excess. The response of this pathogen to both depletion and lethal excess of iron at 30°C have been described in the literature using different strains and iron sources. However, adaptation to iron variations at 37°C, the human body temperature and to gentle overload, is poorly known. In this study, we performed transcriptomic experiments at 30°C and 37°C with low and high but sub-lethal ferrous concentrations. We identified iron responsive genes and clarified the potential effect of temperature on iron homeostasis. Our exploration of the datasets was facilitated by the inference of functional networks of co-expressed genes, which can be accessed through a web interface. Relying on stringent selection and independently of existing knowledge, we characterized a list of 214 genes as key elements of C. glabrata iron homeostasis and interesting candidates for medical applications.

11.
BMC Res Notes ; 12(1): 470, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31370875

ABSTRACT

OBJECTIVE: Label-free quantitative proteomics has emerged as a powerful strategy to obtain high quality quantitative measures of the proteome with only a very small quantity of total protein extract. Because our research projects were requiring the application of bottom-up shotgun mass spectrometry proteomics in the pathogenic yeasts Candida glabrata and Candida albicans, we performed preliminary experiments to (i) obtain a precise list of all the proteins for which measures of abundance could be obtained and (ii) assess the reproducibility of the results arising respectively from biological and technical replicates. DATA DESCRIPTION: Three time-courses were performed in each Candida species, and an alkaline pH stress was induced for two of them. Cells were collected 10 and 60 min after stress induction and proteins were extracted. Samples were analysed two times by mass spectrometry. Our final dataset thus comprises label-free quantitative proteomics results for 24 samples (two species, three time-courses, two time points and two runs of mass spectrometry). Statistical procedures were applied to identify proteins with differential abundances between stressed and unstressed situations. Considering that C. glabrata and C. albicans are human pathogens, which face important pH fluctuations during a human host infection, this dataset has a potential value to other researchers in the field.


Subject(s)
Candida albicans/genetics , Candida glabrata/genetics , Fungal Proteins/genetics , Proteome/genetics , Candida albicans/metabolism , Candida glabrata/metabolism , Datasets as Topic , Fungal Proteins/classification , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Information Dissemination , Internet , Proteome/classification , Proteome/metabolism , Proteomics/methods , Stress, Physiological/genetics
12.
PeerJ ; 7: e6623, 2019.
Article in English | MEDLINE | ID: mdl-30944779

ABSTRACT

BACKGROUND: In biology, high-throughput experimental technologies, also referred as "omics" technologies, are increasingly used in research laboratories. Several thousands of gene expression measurements can be obtained in a single experiment. Researchers are routinely facing the challenge to annotate, store, explore and mine all the biological information they have at their disposal. We present here the Pixel web application (Pixel Web App), an original content management platform to help people involved in a multi-omics biological project. METHODS: The Pixel Web App is built with open source technologies and hosted on the collaborative development platform GitHub (https://github.com/Candihub/pixel). It is written in Python using the Django framework and stores all the data in a PostgreSQL database. It is developed in the open and licensed under the BSD 3-clause license. The Pixel Web App is also heavily tested with both unit and functional tests, a strong code coverage and continuous integration provided by CircleCI. To ease the development and the deployment of the Pixel Web App, Docker and Docker Compose are used to bundle the application as well as its dependencies. RESULTS: The Pixel Web App offers researchers an intuitive way to annotate, store, explore and mine their multi-omics results. It can be installed on a personal computer or on a server to fit the needs of many users. In addition, anyone can enhance the application to better suit their needs, either by contributing directly on GitHub (encouraged) or by extending Pixel on their own. The Pixel Web App does not provide any computational programs to analyze the data. Still, it helps to rapidly explore and mine existing results and holds a strategic position in the management of research data.

13.
Front Microbiol ; 9: 2689, 2018.
Article in English | MEDLINE | ID: mdl-30505294

ABSTRACT

In this work, we used comparative transcriptomics to identify regulatory outliers (ROs) in the human pathogen Candida glabrata. ROs are genes that have very different expression patterns compared to their orthologs in other species. From comparative transcriptome analyses of the response of eight yeast species to toxic doses of selenite, a pleiotropic stress inducer, we identified 38 ROs in C. glabrata. Using transcriptome analyses of C. glabrata response to five different stresses, we pointed out five ROs which were more particularly responsive to iron starvation, a process which is very important for C. glabrata virulence. Global chromatin Immunoprecipitation and gene profiling analyses showed that four of these genes are actually new targets of the iron starvation responsive Aft2 transcription factor in C. glabrata. Two of them (HBS1 and DOM34b) are required for C. glabrata optimal growth in iron limited conditions. In S. cerevisiae, the orthologs of these two genes are involved in ribosome rescue by the NO GO decay (NGD) pathway. Hence, our results suggest a specific contribution of NGD co-factors to the C. glabrata adaptation to iron starvation.

14.
BMC Res Notes ; 11(1): 698, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30286789

ABSTRACT

OBJECTIVE: bPeaks is a peak calling program to detect protein DNA-binding sites from ChIPseq data in small eukaryotic genomes. The simplicity of the bPeaks method is well appreciated by users, but its use via an R package is challenging and time-consuming for people without programming skills. In addition, user feedback has highlighted the lack of a convenient way to carefully explore bPeaks result files. In this context, the development of a web user interface represents an important added value for expanding the bPeaks user community. RESULTS: We developed a new bPeaks application (bPeaks App). The application allows the user to perform all the peak-calling analysis steps with bPeaks in a few mouse clicks via a web browser. We added new features relative to the original R package, particularly the possibility to import personal annotation files to compare the location of the detected peaks with specific genomic elements of interest of the user, in any organism, and a new organization of the result files which are directly manageable via a user-interactive genome browser. This significantly improves the ability of the user to explore all detected basic peaks in detail.


Subject(s)
Chromatin Immunoprecipitation , Computational Biology/methods , Eukaryota/genetics , Genome/genetics , High-Throughput Nucleotide Sequencing , Binding Sites , Internet , Protein Binding , User-Computer Interface
15.
PLoS Comput Biol ; 14(3): e1005992, 2018 03.
Article in English | MEDLINE | ID: mdl-29543809

ABSTRACT

We present a new educational initiative called Meet-U that aims to train students for collaborative work in computational biology and to bridge the gap between education and research. Meet-U mimics the setup of collaborative research projects and takes advantage of the most popular tools for collaborative work and of cloud computing. Students are grouped in teams of 4-5 people and have to realize a project from A to Z that answers a challenging question in biology. Meet-U promotes "coopetition," as the students collaborate within and across the teams and are also in competition with each other to develop the best final product. Meet-U fosters interactions between different actors of education and research through the organization of a meeting day, open to everyone, where the students present their work to a jury of researchers and jury members give research seminars. This very unique combination of education and research is strongly motivating for the students and provides a formidable opportunity for a scientific community to unite and increase its visibility. We report on our experience with Meet-U in two French universities with master's students in bioinformatics and modeling, with protein-protein docking as the subject of the course. Meet-U is easy to implement and can be straightforwardly transferred to other fields and/or universities. All the information and data are available at www.meet-u.org.


Subject(s)
Computational Biology/education , Computational Biology/methods , Research/education , Humans , Research Design , Students , Universities
16.
Sci Rep ; 7(1): 3531, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28615656

ABSTRACT

The CCAAT-binding complex (CBC) is a heterotrimeric transcription factor which is widely conserved in eukaryotes. In the model yeast S. cerevisiae, CBC positively controls the expression of respiratory pathway genes. This role involves interactions with the regulatory subunit Hap4. In many pathogenic fungi, CBC interacts with the HapX regulatory subunit to control iron homeostasis. HapX is a bZIP protein which only shares with Hap4 the Hap4Like domain (Hap4L) required for its interaction with CBC. Here, we show that CBC has a dual role in the pathogenic yeast C. glabrata. It is required, along with Hap4, for the constitutive expression of respiratory genes and it is also essential for the iron stress response, which is mediated by the Yap5 bZIP transcription factor. Interestingly, Yap5 contains a vestigial Hap4L domain. The mutagenesis of this domain severely reduced Yap5 binding to its targets and compromised its interaction with Hap5. Hence, Yap5, like HapX in other species, acts as a CBC regulatory subunit in the regulation of iron stress response. This work reveals new aspects of iron homeostasis in C. glabrata and of the evolution of the role of CBC and Hap4L-bZIP proteins in this process.


Subject(s)
CCAAT-Binding Factor/metabolism , Candida glabrata/genetics , Candida glabrata/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Homeostasis , Iron/metabolism , Gene Regulatory Networks
17.
Sci Rep ; 7(1): 327, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28336917

ABSTRACT

Iron is an essential micronutrient involved in many biological processes and is often limiting for primary production in large regions of the World Ocean. Metagenomic and physiological studies have identified clades or ecotypes of marine phytoplankton that are specialized in iron depleted ecological niches. Although less studied, eukaryotic picophytoplankton does contribute significantly to primary production and carbon transfer to higher trophic levels. In particular, metagenomic studies of the green picoalga Ostreococcus have revealed the occurrence of two main clades distributed along coast-offshore gradients, suggesting niche partitioning in different nutrient regimes. Here, we present a study of the response to iron limitation of four Ostreococcus strains isolated from contrasted environments. Whereas the strains isolated in nutrient-rich waters showed high iron requirements, the oceanic strains could cope with lower iron concentrations. The RCC802 strain, in particular, was able to maintain high growth rate at low iron levels. Together physiological and transcriptomic data indicate that the competitiveness of RCC802 under iron limitation is related to a lowering of iron needs though a reduction of the photosynthetic machinery and of protein content, rather than to cell size reduction. Our results overall suggest that iron is one of the factors driving the differentiation of physiologically specialized Ostreococcus strains in the ocean.


Subject(s)
Acclimatization , Chlorophyta/drug effects , Chlorophyta/physiology , Iron/metabolism , Trace Elements/metabolism , Biomass , Chlorophyta/growth & development , Gene Expression Profiling
18.
Nucleic Acids Res ; 44(18): 8826-8841, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27580715

ABSTRACT

The discovery of novel specific ribosome-associated factors challenges the assumption that translation relies on standardized molecular machinery. In this work, we demonstrate that Tma108, an uncharacterized translation machinery-associated factor in yeast, defines a subpopulation of cellular ribosomes specifically involved in the translation of less than 200 mRNAs encoding proteins with ATP or Zinc binding domains. Using ribonucleoparticle dissociation experiments we established that Tma108 directly interacts with the nascent protein chain. Additionally, we have shown that translation of the first 35 amino acids of Asn1, one of the Tma108 targets, is necessary and sufficient to recruit Tma108, suggesting that it is loaded early during translation. Comparative genomic analyses, molecular modeling and directed mutagenesis point to Tma108 as an original M1 metallopeptidase, which uses its putative catalytic peptide-binding pocket to bind the N-terminus of its targets. The involvement of Tma108 in co-translational regulation is attested by a drastic change in the subcellular localization of ATP2 mRNA upon Tma108 inactivation. Tma108 is a unique example of a nascent chain-associated factor with high selectivity and its study illustrates the existence of other specific translation-associated factors besides RNA binding proteins.


Subject(s)
Aminopeptidases/metabolism , Protein Biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphate/metabolism , Aminopeptidases/chemistry , In Situ Hybridization, Fluorescence , Mitochondria/genetics , Mitochondria/metabolism , Peptide Chain Elongation, Translational , Protein Binding , Proton-Translocating ATPases/genetics , RNA Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Zinc/metabolism
19.
Front Microbiol ; 7: 645, 2016.
Article in English | MEDLINE | ID: mdl-27242683

ABSTRACT

The yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of its transcriptional regulatory network is quite limited. In the present work, we combined genome-wide chromatin immunoprecipitation (ChIP-seq), transcriptome analyses, and DNA binding motif predictions to describe the regulatory interactions of the seven Yap (Yeast AP1) transcription factors of C. glabrata. We described a transcriptional network containing 255 regulatory interactions and 309 potential target genes. We predicted with high confidence the preferred DNA binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon which is conserved in S. cerevisiae, C. glabrata, and C. albicans. We uncovered new roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response to iron starvation. These transcription factors define an interconnected transcriptional network at the cross-roads between redox homeostasis, oxygen consumption, and iron metabolism.

20.
BMC Genomics ; 17: 319, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27142620

ABSTRACT

BACKGROUND: Low iron bioavailability is a common feature of ocean surface water and therefore micro-algae developed original strategies to optimize iron uptake and metabolism. The marine picoeukaryotic green alga Ostreococcus tauri is a very good model for studying physiological and genetic aspects of the adaptation of the green algal lineage to the marine environment: it has a very compact genome, is easy to culture in laboratory conditions, and can be genetically manipulated by efficient homologous recombination. In this study, we aimed at characterizing the mechanisms of iron assimilation in O. tauri by combining genetics and physiological tools. Specifically, we wanted to identify and functionally characterize groups of genes displaying tightly orchestrated temporal expression patterns following the exposure of cells to iron deprivation and day/night cycles, and to highlight unique features of iron metabolism in O. tauri, as compared to the freshwater model alga Chalamydomonas reinhardtii. RESULTS: We used RNA sequencing to investigated the transcriptional responses to iron limitation in O. tauri and found that most of the genes involved in iron uptake and metabolism in O. tauri are regulated by day/night cycles, regardless of iron status. O. tauri lacks the classical components of a reductive iron uptake system, and has no obvious iron regulon. Iron uptake appears to be copper-independent, but is regulated by zinc. Conversely, iron deprivation resulted in the transcriptional activation of numerous genes encoding zinc-containing regulation factors. Iron uptake is likely mediated by a ZIP-family protein (Ot-Irt1) and by a new Fea1-related protein (Ot-Fea1) containing duplicated Fea1 domains. The adaptation of cells to iron limitation involved an iron-sparing response tightly coordinated with diurnal cycles to optimize cell functions and synchronize these functions with the day/night redistribution of iron orchestrated by ferritin, and a stress response based on the induction of thioredoxin-like proteins, of peroxiredoxin and of tesmin-like methallothionein rather than ascorbate. We briefly surveyed the metabolic remodeling resulting from iron deprivation. CONCLUSIONS: The mechanisms of iron uptake and utilization by O. tauri differ fundamentally from those described in C. reinhardtii. We propose this species as a new model for investigation of iron metabolism in marine microalgae.


Subject(s)
Chlorophyta/metabolism , Eukaryota/metabolism , Iron/metabolism , Phytoplankton/metabolism , Adaptation, Biological , Chlorophyta/classification , Chlorophyta/genetics , Cluster Analysis , Copper/metabolism , Eukaryota/genetics , Gene Expression Profiling , Gene Expression Regulation/radiation effects , High-Throughput Nucleotide Sequencing , Homeostasis , Iron Compounds/metabolism , Oxidation-Reduction , Photoperiod , Phylogeny , Phytoplankton/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Signal Transduction , Stress, Physiological , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...