Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Microsc ; 237(3): 435-8, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20500413

ABSTRACT

TiN and TiO(2) coatings, which are known from their low chemical reactivity, high hardness and wear and corrosion resistance, are used for protecting the NiTi surface. In the present work, nearly equiatomic NiTi (50.6 at.%) shape memory alloy was covered with the layers obtained by nitriding under glow discharge at 1073 K. Additionally, at the end of the process some amount of oxygen was added. Characterization of the nitrided/oxided layers structure was carried out using transmission and scanning electron microscopy. The investigations were focused on the structure of the multilayer nitrided/oxided NiTi surface. The surface is formed from nanocrystalline and columnar grains of the TiN phase. Between the top layer and beta-NiTi substrate the interface Ti(2)Ni layer was formed. Addition of oxygen at the end of the process created a thin layer of TiO(2) phase nanograins at the surface of the TiN phase. In the same areas, small amount of amorphous phase was identified. The combination of nitriding and oxidation formed layers that reveal relatively high corrosion resistance.

2.
J Microsc ; 223(Pt 3): 234-6, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17059538

ABSTRACT

The structure of surface layer, obtained on the nearly equiatomic Ni-Ti alloy after nitriding under glow discharge conditions at temperatures 700 or 800 degrees C, was investigated. The structural characterization of the intruded layer was performed on cross-sectional thin foils by the use of the transmission and scanning electron microscopes. The obtained results show that the nitrided layers consist mainly of the nanocrystalline TiN phase and small amount of Ti(2)N. Between the nitrided layers and beta-NiTi matrix an intermediate Ti(2)Ni phase layer was observed.

3.
J Microsc ; 223(Pt 3): 253-5, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17059543

ABSTRACT

The presence of primary precipitates of the Laves phases considerably improves the mechanical properties and the resistance to thermal degradation of the high-temperature shape memory Cu-Al-Nb alloys. The structure analysis of the Laves phases was carried out on particles contained in the ternary and quaternary alloys as well on synthesized compounds related to the composition of the Nb(Cu,Al,X)(2) phase, where X = Ni, Co, Cr, Ti and Zr. The precise structure determination of the Laves phases was carried out by the electron crystallography method using the CRISP software.

SELECTION OF CITATIONS
SEARCH DETAIL