Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(11): e0142668, 2015.
Article in English | MEDLINE | ID: mdl-26580400

ABSTRACT

In this study, we investigated different metal pairings of Au nanoparticles (NPs) as potential catalysts for glycerol dehydration for the first time. All of the systems preferred the formation of hydroxyacetone (HYNE). Although the bimetallics that were tested, i.e., Au NPs supported on Ni, Fe and Cu appeared to be more active than the Au/SiO2 system, only Cu supported Au NPs gave high conversion (ca. 63%) and selectivity (ca. 70%) to HYNE.


Subject(s)
Glycerol/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Catalysis , Copper/chemistry , Gases/chemistry , Iron/chemistry , Nickel/chemistry , Silicon Dioxide/chemistry
2.
PLoS One ; 10(8): e0136805, 2015.
Article in English | MEDLINE | ID: mdl-26308929

ABSTRACT

In this paper we report a new nanometallic, self-activating catalyst, namely, Ni-supported Pd nanoparticles (PdNPs/Ni) for low temperature ammonia cracking, which was prepared using a novel approach involving the transfer of nanoparticles from the intermediate carrier, i.e. nano-spherical SiO2, to the target carrier technical grade Ni (t-Ni) or high purity Ni (p-Ni) grains. The method that was developed allows a uniform nanoparticle size distribution (4,4±0.8 nm) to be obtained. Unexpectedly, the t-Ni-supported Pd NPs, which seemed to have a surface Ca impurity, appeared to be more active than the Ca-free (p-Ni) system. A comparison of the novel PdNPs/Ni catalyst with these reported in the literature clearly indicates the much better hydrogen productivity of the new system, which seems to be a highly efficient, flexible and durable catalyst for gas-phase heterogeneous ammonia cracking in which the TOF reaches a value of 2615 mmolH2/gPd min (10,570 molNH3/molPd(NP) h) at 600°C under a flow of 12 dm3/h (t-Ni).


Subject(s)
Ammonia/chemistry , Calcium/chemistry , Metal Nanoparticles/chemistry , Nickel/chemistry , Palladium/chemistry , Silicon Dioxide/chemistry , Catalysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...