Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; : 174709, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38997018

ABSTRACT

Global change is affecting plant-insect interactions in agroecosystems and can have dramatic consequences on yields when causing non-targeted pest outbreaks and threatening the use of pest natural enemies for biocontrol. The vineyard agroecosystem is an interesting system to study multi-stress conditions: on the one hand, agricultural intensification comes with high inputs of copper-based fungicides and, on the other hand, temperatures are rising due to climate change. We investigated interactive and bottom-up effects of both temperature increase and copper-based fungicides exposure on the important Lepidopteran vineyard pest Lobesia botrana and its natural enemy, the oophagous parasitoid Trichogramma oleae. We exposed L. botrana larvae to three increasing copper sulfate concentrations under two fluctuating thermal regimes, one current and one future. Eggs produced by L. botrana were then exposed to T. oleae. Our results showed that the survival of L. botrana, was only reduced by the highest copper sulfate concentration and improved under the warmer regime. The development time of L. botrana was strongly reduced by the warmer regime but increased with increasing copper sulfate concentrations, whereas pupal mass was reduced by both thermal regime and copper sulfate. T. oleae F1 emergence rate was reduced and their development time increased by combined effects of the warmer regime and increasing copper sulfate concentrations. Size, longevity and fecundity of T. oleae F1 decreased with high copper sulfate concentrations. These effects on the moth pest and its natural enemy are probably the result of trade-offs between the survival and the development of L. botrana facing multi-stress conditions and implicate potential consequences for future biological pest control. Our study supplies valuable data on how the interaction between pests and biological control agents is affected by multi-stress conditions.

2.
Sci Data ; 11(1): 613, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866772

ABSTRACT

Inscribed on the UNESCO World Heritage list, the sub-Antarctic Crozet archipelago is located in a region facing significant environmental changes impacting a poorly known marine biodiversity. Underwater imagery constitutes a valuable non-invasive approach for gathering ecological data and improving our knowledge of ecosystems' vulnerability. We here compiled two datasets, encompassing 17 video-imagery surveys of Crozet nearshore environments conducted in 2021 and 2022 at two sites of Ile de la Possession: Baie du Marin and Crique du Sphinx. Faunal abundance and algal cover data related to each survey are also provided. A total of 755 images were analysed, comprising 52 faunal and 14 algal taxa identified in 2021, as well as 45 faunal and 14 algal taxa identified in 2022. Video-transects were performed in shallow waters by scuba divers using a GoPro®HERO7 multiple camera set-up, and in deeper waters using a remotely operated vehicle. These data provide a first baseline for biodiversity and ecosystem studies, and for monitoring the long-term dynamics of Crozet benthic habitats facing natural and anthropogenic disturbances.


Subject(s)
Biodiversity , Ecosystem , Antarctic Regions , Animals , Aquatic Organisms , Video Recording
3.
Pest Manag Sci ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801156

ABSTRACT

BACKGROUND: Bordeaux mixture is a copper-based fungicide commonly used in vineyards to prevent fungal and bacterial infections in grapevines. However, this fungicide may adversely affect the entomological component, including insect pests. Understanding the impacts of Bordeaux mixture on the vineyard pest Lobesia botrana is an increasing concern in the viticultural production. RESULTS: Bordeaux mixture had detrimental effects on the development and reproductive performance of L. botrana. Several physiological traits were adversely affected by copper-based fungicide exposure, including a decrease in larval survival and a delayed larval development to moth emergence, as well as a reduced reproductive performance through a decrease in female fecundity and fertility and male sperm quality. However, we did not detect any effect of Bordeaux mixture on the measured reproductive behaviors (mating success, pre-mating latency and mating duration). CONCLUSION: Ingestion by larvae of food contaminated with Bordeaux mixture had a negative effect on the reproductive performance of the pest L. botrana, which could affect its population dynamics in vineyards. Although this study highlighted collateral damage of Bordeaux mixture on L. botrana, the potential impact of copper-based fungicides on vineyard diversity, including natural predators is discussed and needs to be taken in consideration in integrated pest management. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

4.
Zootaxa ; 4441(1): 59-75, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-30314020

ABSTRACT

Hesionids are a very speciose group of polychaetes. In the deep sea, they occur in different environments such as hydrothermal vents, cold seeps, abyssal depths or whale falls. In the present study, a new species of Hesionidae, Hesiospina legendrei sp. nov. has been identified based on morphological and molecular (16S and COI genes) data from hydrothermal vents located in Juan de Fuca Ridge (NE Pacific Ocean). This new species is characterized by trapezoid prostomium; proboscis with high number of distal papillae (20-27), a pair of sac-like structures inserted ventro-laterally in proboscis; notopodia lobe reduced with multiple, slender aciculae on segments 1-5; and neuropodia developed with single, simple chaeta, and numerous, heterogomph falcigers, with 1-2 inferiormost having elongated hood. Hesiospina legendrei sp. nov. is the third described species in the genus. Sequences from the two previously described Hesiospina species are included in the molecular analyses, and although the genes used in this study are not sufficient to resolve the relationships on genus level, the result raises questions about the cosmopolitan aspect of H. vestimentifera.


Subject(s)
Annelida , Phylogeny , Animals , Hydrothermal Vents , Pacific Ocean , Polychaeta
5.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28381618

ABSTRACT

Ocean tides and winter surface storms are among the main factors driving the dynamics and spatial structure of marine coastal species, but the understanding of their impact on deep-sea and hydrothermal vent communities is still limited. Multidisciplinary deep-sea observatories offer an essential tool to study behavioural rhythms and interactions between hydrothermal community dynamics and environmental fluctuations. Here, we investigated whether species associated with a Ridgeia piscesae tubeworm vent assemblage respond to local ocean dynamics. By tracking variations in vent macrofaunal abundance at different temporal scales, we provide the first evidence that tides and winter surface storms influence the distribution patterns of mobile and non-symbiotic hydrothermal species (i.e. pycnogonids Sericosura sp. and Polynoidae polychaetes) at more than 2 km depth. Local ocean dynamics affected the mixing between hydrothermal fluid inputs and surrounding seawater, modifying the environmental conditions in vent habitats. We suggest that hydrothermal species respond to these habitat modifications by adjusting their behaviour to ensure optimal living conditions. This behaviour may reflect a specific adaptation of vent species to their highly variable habitat.


Subject(s)
Atmosphere , Hydrothermal Vents , Invertebrates , Animals , Ecosystem , Seawater , Tidal Waves
SELECTION OF CITATIONS
SEARCH DETAIL
...