Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 79(5): 1635-1649, 2023 May.
Article in English | MEDLINE | ID: mdl-36622360

ABSTRACT

BACKGROUND: Pyridazine pyrazolecarboxamides (PPCs) are a novel insecticide class discovered and optimized at BASF. Dimpropyridaz is the first PPC to be submitted for registration and controls many aphid species as well as whiteflies and other piercing-sucking insects. RESULTS: Dimpropyridaz and other tertiary amide PPCs are proinsecticides that are converted in vivo into secondary amide active forms by N-dealkylation. Active secondary amide metabolites of PPCs potently inhibit the function of insect chordotonal neurons. Unlike Group 9 and 29 insecticides, which hyperactivate chordotonal neurons and increase Ca2+ levels, active metabolites of PPCs silence chordotonal neurons and decrease intracellular Ca2+ levels. Whereas the effects of Group 9 and 29 insecticides require TRPV (Transient Receptor Potential Vanilloid) channels, PPCs act in a TRPV-independent fashion, without compromising cellular responses to Group 9 and 29 insecticides, placing the molecular PPC target upstream of TRPVs. CONCLUSIONS: PPCs are a new class of chordotonal organ modulator insecticide for control of piercing-sucking pests. Dimpropyridaz is a PPC proinsecticide that is activated in target insects to secondary amide forms that inhibit the firing of chordotonal organs. The inhibition occurs at a site upstream of TRPVs and is TRPV-independent, providing a novel mode of action for resistance management. © 2023 BASF Corporation. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Aphids , Insecticides , Animals , Insecticides/pharmacology , Insecta , Amides/pharmacology , Insecticide Resistance
2.
PLoS Biol ; 12(9): e1001959, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25268747

ABSTRACT

Synchronized neuronal activity is vital for complex processes like behavior. Circadian pacemaker neurons offer an unusual opportunity to study synchrony as their molecular clocks oscillate in phase over an extended timeframe (24 h). To identify where, when, and how synchronizing signals are perceived, we first studied the minimal clock neural circuit in Drosophila larvae, manipulating either the four master pacemaker neurons (LNvs) or two dorsal clock neurons (DN1s). Unexpectedly, we found that the PDF Receptor (PdfR) is required in both LNvs and DN1s to maintain synchronized LNv clocks. We also found that glutamate is a second synchronizing signal that is released from DN1s and perceived in LNvs via the metabotropic glutamate receptor (mGluRA). Because simultaneously reducing Pdfr and mGluRA expression in LNvs severely dampened Timeless clock protein oscillations, we conclude that the master pacemaker LNvs require extracellular signals to function normally. These two synchronizing signals are released at opposite times of day and drive cAMP oscillations in LNvs. Finally we found that PdfR and mGluRA also help synchronize Timeless oscillations in adult s-LNvs. We propose that differentially timed signals that drive cAMP oscillations and synchronize pacemaker neurons in circadian neural circuits will be conserved across species.


Subject(s)
Circadian Clocks/genetics , Cyclic AMP/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Neurons/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Metabotropic Glutamate/genetics , Animals , Circadian Rhythm/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Gene Expression Regulation , Glutamic Acid/metabolism , Larva/genetics , Larva/metabolism , Neurons/cytology , Neuropeptides/metabolism , Photoperiod , Receptors, G-Protein-Coupled/metabolism , Receptors, Metabotropic Glutamate/metabolism , Signal Transduction
3.
J Neurophysiol ; 108(2): 684-96, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22539819

ABSTRACT

Drosophila melanogaster is a valuable model system for the neural basis of complex behavior, but an inability to routinely interrogate physiologic connections within central neural networks of the fly brain remains a fundamental barrier to progress in the field. To address this problem, we have introduced a simple method of measuring functional connectivity based on the independent expression of the mammalian P2X2 purinoreceptor and genetically encoded Ca(2+) and cAMP sensors within separate genetically defined subsets of neurons in the adult brain. We show that such independent expression is capable of specifically rendering defined sets of neurons excitable by pulses of bath-applied ATP in a manner compatible with high-resolution Ca(2+) and cAMP imaging in putative follower neurons. Furthermore, we establish that this approach is sufficiently sensitive for the detection of excitatory and modulatory connections deep within larval and adult brains. This technically facile approach can now be used in wild-type and mutant genetic backgrounds to address functional connectivity within neuronal networks governing a wide range of complex behaviors in the fly. Furthermore, the effectiveness of this approach in the fly brain suggests that similar methods using appropriate heterologous receptors might be adopted for other widely used model systems.


Subject(s)
Brain Mapping/methods , Brain/physiology , Drosophila melanogaster/physiology , Molecular Imaging/methods , Nerve Net/physiology , Neural Pathways/physiology , Animals
4.
J Neurophysiol ; 107(8): 2096-108, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22279191

ABSTRACT

The relatively simple clock neuron network of Drosophila is a valuable model system for the neuronal basis of circadian timekeeping. Unfortunately, many key neuronal classes of this network are inaccessible to electrophysiological analysis. We have therefore adopted the use of genetically encoded sensors to address the physiology of the fly's circadian clock network. Using genetically encoded Ca(2+) and cAMP sensors, we have investigated the physiological responses of two specific classes of clock neuron, the large and small ventrolateral neurons (l- and s-LN(v)s), to two neurotransmitters implicated in their modulation: acetylcholine (ACh) and γ-aminobutyric acid (GABA). Live imaging of l-LN(v) cAMP and Ca(2+) dynamics in response to cholinergic agonist and GABA application were well aligned with published electrophysiological data, indicating that our sensors were capable of faithfully reporting acute physiological responses to these transmitters within single adult clock neuron soma. We extended these live imaging methods to s-LN(v)s, critical neuronal pacemakers whose physiological properties in the adult brain are largely unknown. Our s-LN(v) experiments revealed the predicted excitatory responses to bath-applied cholinergic agonists and the predicted inhibitory effects of GABA and established that the antagonism of ACh and GABA extends to their effects on cAMP signaling. These data support recently published but physiologically untested models of s-LN(v) modulation and lead to the prediction that cholinergic and GABAergic inputs to s-LN(v)s will have opposing effects on the phase and/or period of the molecular clock within these critical pacemaker neurons.


Subject(s)
Cholinergic Neurons/physiology , Circadian Clocks/physiology , GABAergic Neurons/physiology , Nerve Net/physiology , Neurons/physiology , Animals , Cholinergic Agents/pharmacology , Cholinergic Neurons/drug effects , Circadian Clocks/drug effects , Drosophila melanogaster , GABA Modulators/pharmacology , GABAergic Neurons/drug effects , Male , Nerve Net/drug effects , Neurons/drug effects
5.
J Biol Rhythms ; 26(6): 518-29, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22215610

ABSTRACT

Intertidal species have both circadian and circatidal clocks. Although the behavioral evidence for these oscillators is more than 5 decades old, virtually nothing is known about their molecular clockwork. Pigment-dispersing hormones (PDHs) were originally described in crustaceans. Their insect homologs, pigment-dispersing factors (PDFs), have a prominent role as clock output and synchronizing signals released from clock neurons. We show that gene duplication in crabs has led to two PDH genes (ß-pdh-I and ß-pdh-II). Phylogenetically, ß-pdh-I is more closely related to insect pdf than to ß-pdh-II, and we hypothesized that ß-PDH-I may represent a canonical clock output signal. Accordingly, ß-PDH-I expression in the brain of the intertidal crab Cancer productus is similar to that of PDF in Drosophila melanogaster, and neurons that express PDH-I also show CYCLE-like immunoreactivity. Using D. melanogaster pdf-null mutants (pdf(01)) as a heterologous system, we show that ß-pdh-I is indistinguishable from pdf in its ability to rescue the mutant arrhythmic phenotype, but ß-pdh-II fails to restore the wild-type phenotype. Application of the three peptides to explanted brains shows that PDF and ß-PDH-I are equally effective in inducing the signal transduction cascade of the PDF receptor, but ß-PDH-II fails to induce a normal cascade. Our results represent the first functional characterization of a putative molecular clock output in an intertidal species and may provide a critical step towards the characterization of molecular components of biological clocks in intertidal organisms.


Subject(s)
Biological Clocks/physiology , Brachyura/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Neuropeptides/metabolism , Peptides/metabolism , Signal Transduction/physiology , Amino Acid Sequence , Animals , Behavior, Animal/physiology , Brachyura/anatomy & histology , Brain/anatomy & histology , Brain/metabolism , Circadian Rhythm/physiology , Drosophila Proteins/classification , Drosophila Proteins/genetics , Drosophila melanogaster/anatomy & histology , Gene Duplication , Molecular Sequence Data , Neurons/metabolism , Neuropeptides/classification , Neuropeptides/genetics , Peptides/classification , Peptides/genetics , Phenotype , Phylogeny , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...