Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
3.
J Biomater Sci Polym Ed ; 4(6): 643-52, 1993.
Article in English | MEDLINE | ID: mdl-8280677

ABSTRACT

The activation of human plasma prekallikrein (PKK) to kallikrein (KK), induced by the contact of blood with foreign materials, is a useful in vitro hemocompatibility test. Kallikrein is easily detected by its reaction with the chromogenic substrate H-D-Pro-Phe-Arg-pNA, which releases p-nitroaniline, revealed by its absorption at 405 nm. This test, which was already carried out by evaluating PKK activation by the 'end-point' method, has been carried out in this work by the more accurate 'initial velocity' method, i.e. by evaluating the activation from the initial rates of the KK-substrate reaction. The tests were carried out on the following materials: borosilicate glass (as a high-activation reference material), silicone (as a low-activation reference material), the commercial biomaterial Cardiothane 51, three graft copolymers synthesized in our laboratory by reacting ethylene-vinyl alcohol copolymer (EVAL) with styrene-maleic anhydride copolymer (SMA), and EVAL itself. A mathematical treatment based on a simple kinetic model has been used for a first-approximation evaluation of the PKK-activating power of the materials tested. The quite low activating power of the EVAL-SMA copolymers, which are easily processable into water-permeable hollow fibers, suggests the possibility of their use in blood dialyzers.


Subject(s)
Biocompatible Materials , Maleic Anhydrides/chemistry , Polystyrenes/chemistry , Polyvinyls/chemistry , Prekallikrein/metabolism , Amino Acid Sequence , Enzyme Activation , Humans , Molecular Sequence Data
4.
Clin Mater ; 8(1-2): 81-8, 1991.
Article in English | MEDLINE | ID: mdl-10149151

ABSTRACT

A porous, distensible, tubular membrane which incorporates albumin and basic Fibroblast Growth Factor (bFGF), and is potentially utilizable as a bioactive small-diameter vascular prosthesis, was fabricated by a combined spraying, phase-inversion technique using a suspension of albumin and bFGF into a polyetherurethane-urea (Biomer) solution in dimethylacetamide (DMA). Scanning electron microscopy showed a material with an open-cell trabecular structure and small particles of albumin and/or bFGF entrapped in the bulk of the polyurethane trabeculae. The material released albumin and bFGF at an approximately constant rate for at least 2 weeks. The bFGF initially incorporated in the polymer remained biologically active as shown by in-vitro proliferation of human endothelial cells.


Subject(s)
Blood Vessel Prosthesis/instrumentation , Albumins/chemistry , Biological Assay/methods , Cell Division , Endothelium, Vascular/cytology , Fibroblast Growth Factors/chemistry , Humans , Materials Testing , Polyurethanes/chemistry , Prosthesis Design
SELECTION OF CITATIONS
SEARCH DETAIL
...