Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 150(22): 224504, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31202218

ABSTRACT

The quest for a possible liquid-liquid coexistence line in supercooled water below its homogeneous nucleation temperature is faced by confining water within a porous silica substrate (MCM-41). This system is investigated by synchrotron radiation infrared spectroscopy, exploring both the intramolecular and the intermolecular vibrational dynamics, in the temperature range from ambient down to ∼120 K, along several isobaric paths between 0.7 kbar and 3.0 kbar. Upon lowering the temperature, the OH-stretching band shows that the intramolecular vibrational dynamics continuously evolves from predominantly liquidlike to predominantly icelike. An abrupt change in the line shape of the intermolecular vibrational band between 220 K and 240 K, depending on the pressure, is the signature of nucleation of ice within the MCM-41 pores. These findings do not support the presence of two liquid phases and provide evidence for the coexistence of liquid water and ice in water confined in MCM-41.

2.
Geophys Res Lett ; 46(3): 1348-1356, 2019 Feb 16.
Article in English | MEDLINE | ID: mdl-31007309

ABSTRACT

Recent experiments have demonstrated the existence of previously unknown iron oxides at high pressure and temperature including newly discovered pyrite-type FeO2 and FeO2Hx phases stable at deep terrestrial lower mantle pressures and temperatures. In the present study, we probed the iron oxidation state in high-pressure transformation products of Fe3+OOH goethite by in situ X-ray absorption spectroscopy in laser-heated diamond-anvil cell. At pressures and temperatures of ~91 GPa and 1,500-2,350 K, respectively, that is, in the previously reported stability field of FeO2Hx, a measured shift of -3.3 ± 0.1 eV of the Fe K-edge demonstrates that iron has turned from Fe3+ to Fe2+. We interpret this reductive valence change of iron by a concomitant oxidation of oxygen atoms from O2- to O-, in agreement with previous suggestions based on the structures of pyrite-type FeO2 and FeO2Hx phases. Such peculiar chemistry could drastically change our view of crystal chemistry in deep planetary interiors.

3.
Phys Chem Chem Phys ; 21(9): 4931-4938, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30758013

ABSTRACT

We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160-290 K by combining small angle neutron scattering and wide angle diffraction. This allows us to observe simultaneously the intermolecular correlations in the local water structure (which shows up in a main water peak around Q = 1.7 Å-1), the two-dimensional hexagonal arrangement of water cylinders in the silica matrix (which gives rise to a pronounced Bragg peak around Q = 0.2 Å-1), and the so-called Porod scattering at smaller Q, which arises from larger scale interfacial scattering within the material. In the literature, the temperature evolution of the intensity of the Bragg peak has been interpreted as the signature of a density minimum in confined water at approximately 210 K. Here we show that, under the conditions of our experiment, a fraction of freezable water coexists with a layer of non-freezable water within the pore volume. The overall temperature dependence of our data in the different Q regions, as well as the comparison of the data for the two pore sizes, leads us to conclude that the observed variation in the intensity of the Bragg diffraction peak is actually caused by a liquid to ice transition in the freezable fraction of confined water.

SELECTION OF CITATIONS
SEARCH DETAIL
...