Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4854, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563174

ABSTRACT

Neurogenesis has been studied extensively in the ectoderm, from which most animals generate the majority of their neurons. Neurogenesis from non-ectodermal tissue is, in contrast, poorly understood. Here we use the cnidarian Nematostella vectensis as a model to provide new insights into the molecular regulation of non-ectodermal neurogenesis. We show that the transcription factor NvPrdm14d is expressed in a subpopulation of NvSoxB(2)-expressing endodermal progenitor cells and their NvPOU4-expressing progeny. Using a new transgenic reporter line, we show that NvPrdm14d-expressing cells give rise to neurons in the body wall and in close vicinity of the longitudinal retractor muscles. RNA-sequencing of NvPrdm14d::GFP-expressing cells and gene knockdown experiments provide candidate genes for the development and function of these neurons. Together, the identification of a population of endoderm-specific neural progenitor cells and of previously undescribed putative motoneurons in Nematostella provide new insights into the regulation of non-ectodermal neurogenesis.


Subject(s)
Neural Stem Cells , Sea Anemones , Animals , Ectoderm , Neurogenesis/genetics , Sea Anemones/genetics , Animals, Genetically Modified , Gene Expression Regulation, Developmental
2.
Open Biol ; 7(2)2017 02.
Article in English | MEDLINE | ID: mdl-28148821

ABSTRACT

Notch is a key signalling pathway playing multiple and varied functions during development. Notch regulates the selection of cells with a neurogenic fate and maintains a pool of yet uncommitted precursors through lateral inhibition, both in insects and in vertebrates. Here, we explore the functions of Notch in the annelid Platynereis dumerilii (Lophotrochozoa). Conserved components of the pathway are identified and a scenario for their evolution in metazoans is proposed. Unexpectedly, neither Notch nor its ligands are expressed in the neurogenic epithelia of the larva at the time when massive neurogenesis begins. Using chemical inhibitors and neural markers, we demonstrate that Notch plays no major role in the general neurogenesis of larvae. Instead, we find Notch components expressed in nascent chaetal sacs, the organs that produce the annelid bristles. Impairing Notch signalling induces defects in chaetal sac formation, abnormalities in chaetae producing cells and a change of identity of chaeta growth accessory cells. This is the first bilaterian species in which the early neurogenesis processes appear to occur without a major involvement of the Notch pathway. Instead, Notch is co-opted to pattern annelid-specific organs, likely through a lateral inhibition process. These features reinforce the view that Notch signalling has been recruited multiple times in evolution due to its remarkable 'toolkit' nature.


Subject(s)
Body Patterning , Neurogenesis , Polychaeta/physiology , Receptors, Notch/metabolism , Animals , Biological Evolution , Cell Differentiation , Cell Proliferation , Gene Expression Regulation, Developmental , Phylogeny , Polychaeta/growth & development , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...