Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 607(Pt 2): 1687-1698, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34598028

ABSTRACT

We propose a general, versatile and broad in scope two-steps approach for the elaboration of cross-linked polymer microparticles (µPs) with tunable functionalities and surface properties. Surface-functionalized cross-linked polymer µPs with diameter in the 80 µm range are prepared by the combination of: 1) suspension free radical copolymerization of styrene, propargyl methacrylate and 1,6-hexanediol dimethacrylate, 2) subsequent covalent tethering of a variety of azide-functionalized moieties (i.e. rhodamine B fluorescent dye or poly(ethylene glycol) (PEG) brush precursor) by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and, 3) optional N-alkylation of the 1,2,3-triazole groups followed by anion exchange reaction to afford covalently-tethered 1,2,3-triazolium ionic liquids with iodide or cresol red counter-anions. The resulting µPs are characterized by laser diffraction, differential scanning calorimetry, as well as by optical, confocal fluorescence, scanning electron and atomic force microscopies. Finally, the rheological properties of concentrated suspensions (volume fractions of 0.40 and 0.44) of the different synthesized µPs dispersed in a 1:1 (vol/vol) mixture of polyalkylene glycol and water are studied. The modification of µPs surface properties contributes not only to change the stability of the suspensions against flocculation, but also to significantly modify their rheological behavior at high shear stresses. This represents a clear experimental evidence of the importance of non-hydrodynamic contact forces in the rheology of non-Brownian suspensions (NBSs).


Subject(s)
Click Chemistry , Polymers , Azides , Free Radicals , Surface Properties , Suspensions
2.
Soft Matter ; 17(25): 6088-6097, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34124737

ABSTRACT

This paper focuses on shear-thinning in non-Brownian suspensions. In particular, it proposes a quantitative experimental validation of the model proposed by Lobry et al. [J. Fluid Mech., 2019, 860, 682-710] that links viscosity to microscopic friction between particles and, in particular, shear-thinning to load-dependent friction coefficient. To this aim, Atomic Force Microscopy (AFM) is used to measure the pairwise friction coefficient of polystyrene particles (40 µm in diameter), immersed in a Newtonian liquid, for different normal loads ranging from 10 to 1000 nN. It is shown that the inter-particle friction coefficient decreases with the load, contrarily to what is expected for macroscopic contacting bodies. The experimental friction law is then introduced into the viscosity model proposed by Lobry et al. and the results are compared to the viscosity of suspensions made of the same particles dispersed in the same liquid as those used for AFM measurements. The very good agreement between the measured viscosity values and those predicted by the model of Lobry et al. with the friction coefficient measured by AFM as input data shows the relevance of the scenario proposed by Lobry et al. and highlights the close links between the microscopic friction properties of the particles and the macroscopic rheological behavior of suspensions.

3.
Article in English | MEDLINE | ID: mdl-26382330

ABSTRACT

Dense suspensions display complex flow properties, intermediate between solid and liquid. When sheared, a suspension self-organizes and forms particle clusters that are likely to percolate, possibly leading to significant changes in the overall behavior. Some theoretical conjectures on percolation in suspensions were proposed by de Gennes some 35 years ago. Although still used, they have not received any validations so far. In this Rapid Communication, we use three-dimensional detailed numerical simulations to understand the formation of percolation clusters and assess de Gennes conjectures. We found that sheared noncolloidal suspensions do show percolation clusters occurring at a critical volume fraction in the range 0.3-0.4 depending on the system size. Percolation clusters are roughly linear, extremely transient, and involve a limited number of particles. We have computed critical exponents and found that clusters can be described reasonably well by standard isotropic percolation theory. The only disagreement with de Gennes concerns the role of percolation clusters on rheology which is found to be weak. Our results eventually validate de Gennes conjectures and demonstrate the relevance of percolation concepts in suspension physics.

4.
Phys Rev Lett ; 107(20): 208302, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-22181780

ABSTRACT

The shear-induced microstructure in a semidilute noncolloidal suspension is studied. A high-resolution pair distribution function in the plane of shear is experimentally determined. It is shown to be anisotropic, with a depleted direction close to the velocity axis in the recession quadrant. The influence of roughness on the interaction between particles is quantitatively evidenced. The experimental results compare well with a model from particle pair trajectories.

5.
Chaos ; 15(1): 13102, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15836256

ABSTRACT

In this paper, we report experimental evidence of Lorenz chaos for the Quincke rotor dynamics. We study the angular motion of an insulating cylinder immersed in slightly conducting oil and submitted to a direct current electric field. The simple equations which describe the dynamics of the rotor are shown to be equivalent to the Lorenz equations. In particular, we observe two bifurcations in our experimental system. Above a critical value of the electric field, the cylinder rotates at a constant rate. At a second bifurcation, the system becomes chaotic. The characteristic shape of the experimental first return map provides strong evidence for Lorenz-type chaos.

6.
J Colloid Interface Sci ; 279(1): 259-65, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15380437

ABSTRACT

We present a new method of measuring the electrophoretic mobility of a particle in a concentrated suspension. The method is used to measure the electrophoretic mobility of PMMA particles (diameter 10 microm) suspended in a mixture of liquid hydrocarbons. The particle volume fraction of the suspension is varied from 0 up to 0.30 and the resulting variation of the electrophoretic mobility is discussed. The suspending liquid is such that its refractive index is very close to that of the particles. Thus the suspension is almost transparent and it is possible to follow through a microscope the motion of one particle. The suspension is subjected to a low-frequency electric field (0.5 Hz). The cell containing the suspension is mounted on a piezoelectric crystal. The displacement that compensates for the particle motion (when the particle image is steady) is determined.

SELECTION OF CITATIONS
SEARCH DETAIL
...