Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (147)2019 05 02.
Article in English | MEDLINE | ID: mdl-31107448

ABSTRACT

Collective animal behavior arises from individual motivations and social interactions that are critical for individual fitness. Fish have long inspired investigations into collective motion, specifically, their ability to integrate environmental and social information across ecological contexts. This demonstration illustrates techniques used for quantifying behavioral responses of fish, in this case, Golden Shiner (Notemigonus crysoleucas), to visual stimuli using computer visualization and digital image analysis. Recent advancements in computer visualization allow for empirical testing in the lab where visual features can be controlled and finely manipulated to isolate the mechanisms of social interactions. The purpose of this method is to isolate visual features that can influence the directional decisions of the individual, whether solitary or with groups. This protocol provides specifics on the physical Y-maze domain, recording equipment, settings and calibrations of the projector and animation, experimental steps and data analyses. These techniques demonstrate that computer animation can elicit biologically-meaningful responses. Moreover, the techniques are easily adaptable to test alternative hypotheses, domains, and species for a broad range of experimental applications. The use of virtual stimuli allows for the reduction and replacement of the number of live animals required, and consequently reduces laboratory overhead. This demonstration tests the hypothesis that small relative differences in the movement speeds (2 body lengths per second) of virtual conspecifics will improve the speed and accuracy with which shiners follow the directional cues provided by the virtual silhouettes. Results show that shiners directional decisions are significantly affected by increases in the speed of the visual cues, even in the presence of background noise (67% image coherency). In the absence of any motion cues, subjects chose their directions at random. The relationship between decision speed and cue speed was variable and increases in cue speed had a modestly disproportionate influence on directional accuracy.


Subject(s)
Behavior, Animal/physiology , Decision Making/physiology , Maze Learning/physiology , Animals , Cues , Cyprinidae/physiology , Interpersonal Relations , Movement/physiology , Photic Stimulation , Psychophysics
2.
PLoS Comput Biol ; 12(2): e1004708, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26914768

ABSTRACT

Social animals are capable of enhancing their awareness by paying attention to their neighbors, and prey found in groups can also confuse their predators. Both sides of these sensory benefits have long been appreciated, yet less is known of how the perception of events from the perspectives of both prey and predator can interact to influence their encounters. Here we examined how a visual sensory mechanism impacts the collective motion of prey and, subsequently, how their resulting movements influenced predator confusion and capture ability. We presented virtual prey to human players in a targeting game and measured the speed and accuracy with which participants caught designated prey. As prey paid more attention to neighbor movements their collective coordination increased, yet increases in prey coordination were positively associated with increases in the speed and accuracy of attacks. However, while attack speed was unaffected by the initial state of the prey, accuracy dropped significantly if the prey were already organized at the start of the attack, rather than in the process of self-organizing. By repeating attack scenarios and masking the targeted prey's neighbors we were able to visually isolate them and conclusively demonstrate how visual confusion impacted capture ability. Delays in capture caused by decreased coordination amongst the prey depended upon the collection motion of neighboring prey, while it was primarily the motion of the targets themselves that determined capture accuracy. Interestingly, while a complete loss of coordination in the prey (e.g., a flash expansion) caused the greatest delay in capture, such behavior had little effect on capture accuracy. Lastly, while increases in collective coordination in prey enhanced personal risk, traveling in coordinated groups was still better than appearing alone. These findings demonstrate a trade-off between the sensory mechanisms that can enhance the collective properties that emerge in social animals and the individual group member's predation risk during an attack.


Subject(s)
Models, Biological , Movement/physiology , Predatory Behavior/physiology , Social Behavior , Adult , Animals , Computational Biology , Computer Simulation , Confusion , Humans
3.
PLoS One ; 9(9): e108220, 2014.
Article in English | MEDLINE | ID: mdl-25268736

ABSTRACT

Artificial barriers have become ubiquitous features in freshwater ecosystems and they can significantly impact a region's biodiversity. Assessing the risk faced by fish forced to navigate their way around artificial barriers is largely based on assays of individual swimming behavior. However, social interactions can significantly influence fish movement patterns and alter their risk exposure. Using an experimental flume, we assessed the effects of social interactions on the amount of time required for juvenile palmetto bass (Morone chrysops × M. saxatilis) to navigate downstream past an artificial barrier. Fish were released either individually or in groups into the flume using flow conditions that approached the limit of their expected swimming stamina. We compared fish swimming behaviors under solitary and schooling conditions and measured risk as the time individuals spent exposed to the barrier. Solitary fish generally turned with the current and moved quickly downstream past the barrier, while fish in groups swam against the current and displayed a 23-fold increase in exposure time. Solitary individuals also showed greater signs of skittish behavior than those released in groups, which was reflected by larger changes in their accelerations and turning profiles. While groups displayed fission-fusion dynamics, inter-individual positions were highly structured and remained steady over time. These spatial patterns align with theoretical positions necessary to reduce swimming exertion through either wake capturing or velocity sheltering, but diverge from any potential gains from channeling effects between adjacent neighbors. We conclude that isolated performance trials and projections based on individual behaviors can lead to erroneous predictions of risk exposure along engineered structures. Our results also suggest that risk perception and behavior may be more important than a fish's swimming stamina in artificially modified systems.


Subject(s)
Adaptation, Psychological , Bass/physiology , Behavior, Animal/physiology , Imitative Behavior/physiology , Swimming/psychology , Animals , Cooperative Behavior , Ecosystem , Fresh Water , Hydrodynamics , Impulsive Behavior , Risk , Swimming/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...