Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673194

ABSTRACT

Aseptic implant loosening after a total joint replacement is partially influenced by material-specific factors when cobalt-chromium alloys are used, including osteolysis induced by wear and corrosion products and stress shielding. Here, we aim to characterize a hybrid material consisting of alumina-toughened zirconia (ATZ) ceramics and additively manufactured Ti-35Nb-6Ta (TiNbTa) alloys, which are joined by a glass solder. The structure of the joint, the static and fatigue shear strength, the influence of accelerated aging, and the cytotoxicity with human osteoblasts are characterized. Furthermore, the biomechanical properties of the functional demonstrators of a femoral component for total knee replacements are evaluated. The TiNbTa-ATZ specimens showed a homogenous joint with statistically distributed micro-pores and a slight accumulation of Al-rich compounds at the glass solder-TiNbTa interface. Shear strengths of 26.4 ± 4.2 MPa and 38.2 ± 14.4 MPa were achieved for the TiNbTa-ATZ and Ti-ATZ specimens, respectively, and they were not significantly affected by the titanium material used, nor by accelerated aging (p = 0.07). All of the specimens survived 107 cycles of shear loading to 10 MPa. Furthermore, the TiNbTa-ATZ did not impair the proliferation and metabolic activity of the human osteoblasts. Functional demonstrators made of TiNbTa-ATZ provided a maximum bearable extension-flexion moment of 40.7 ± 2.2 Nm. The biomechanical and biological properties of TiNbTa-ATZ demonstrate potential applications for endoprosthetic implants.

2.
JTCVS Open ; 7: 76-88, 2021 Sep.
Article in English | MEDLINE | ID: mdl-36003713

ABSTRACT

Background: Even after decades of intensive research, an ideal heart valve prosthesis remains elusive. Shortcomings of conventional devices include reduced durability of bioprostheses and the thrombogenicity of mechanical substitutes, necessitating anticoagulation and resulting in imperfect hemodynamics. Here we present in vivo results of a novel mechanical heart valve prosthesis aiming for freedom from anticoagulation. Methods: Four female sheep had their aortic valves replaced using the novel mechanical heart valve (size 21 mm), with no postoperative anticoagulation treatment. This trileaflet heart valve was designed with the pivots in the systolic central flow. Hemodynamics, biochemistry, hematology, and macroscopy and microscopy were studied at 90 days in 2 sheep and at 1 year in the other 2 sheep. Results: Mean (<6 mm Hg) and peak (<10 mm Hg) aortic transvalvular gradients remained low during the study period. Aortic regurgitation was trivial, and central traces were only rarely observed. The rate of thrombotic events was very low, with none macroscopically and microscopically visible thrombotic material on the device. Biochemistry and hemotology were unchanged without hemolysis. In 3 sheep, the fibrous pannus and mitral leaflet were partially folded over the edge of the annular body. Apart from organic/inorganic deposits on the leaflets after 1 year, the ultrastructurally evaluated leaflets were similar to those of nonimplanted controls. Conclusions: The preliminary in vivo results of this novel anticoagulation-free aortic mechanical heart valve are promising with excellent hemodynamics and a very low risk of thrombotic events.

3.
World J Transplant ; 7(3): 193-202, 2017 Jun 24.
Article in English | MEDLINE | ID: mdl-28698836

ABSTRACT

AIM: To investigate osteoconductive and antimicrobial properties of a titanium-copper-nitride (TiCuN) film and an additional BONIT® coating on titanium substrates. METHODS: For micro-structuring, the surface of titanium test samples was modified by titanium plasma spray (TPS). On the TPS-coated samples, the TiCuN layer was deposited by physical vapor deposition. The BONIT® layer was coated electrochemically. The concentration of copper ions released from TiCuN films was measured by atomic absorption spectrometry. MG-63 osteoblasts on TiCuN and BONIT® were analyzed for cell adhesion, viability and spreading. In parallel, Staphylococcus epidermidis (S. epidermidis) were cultivated on the samples and planktonic and biofilm-bound bacteria were quantified by counting of the colony-forming units. RESULTS: Field emission scanning electron microscopy (FESEM) revealed rough surfaces for TPS and TiCuN and a special crystalline surface structure on TiCuN + BONIT®. TiCuN released high amounts of copper quickly within 24 h. These release dynamics were accompanied by complete growth inhibition of bacteria and after 2 d, no planktonic or adherent S. epidermidis were found on these samples. On the other hand viability of MG-63 cells was impaired during direct cultivation on the samples within 24 h. However, high cell colonization could be found after a 24 h pre-incubation step in cell culture medium simulating the in vivo dynamics closer. On pre-incubated TiCuN, the osteoblasts span the ridges and demonstrate a flattened, well-spread phenotype. The additional BONIT®coating reduced the copper release of the TiCuN layer significantly and showed a positive effect on the initial cell adhesion. CONCLUSION: The TiCuNcoating inhibits the formation of bacterial biofilms on orthopedic implants by influencing the "race for the surface" to the advantage of osteoblasts.

4.
J Appl Biomater Funct Mater ; 11(1): e1-8, 2013 Jun 24.
Article in English | MEDLINE | ID: mdl-22798245

ABSTRACT

AIM: Design optimization and surface modifications of orthopedic implants are focused on adhesive properties depending on specific applications. To obtain an in-vitro understanding of the adhesion interaction of bone cells on implant surfaces the time-dependent adhesion behavior of osteoblastic cells was studied. MATERIALS AND METHODS: MG-63 osteoblastic cells were seeded on discs of polished titanium alloy (Ti6Al4V) and allowed to adhere for various time periods (1 to 48 h). Using a spinning disc device and a confocal laser scanning microscope (LSM) the shear stress required to detach the bone cells from the substrate was determined. An approximation of the adhesion force was calculated from measurements of cell height and contact radius. RESULTS: Shear stress ranged from 40.4 N/m2 to 82.4 N/m2 showing an increase in cell adhesion reaching a maximum after 6 h before decreasing significantly. Using the cell height and contact radii, measured for the various time periods, the lowest adhesion force of 232 nN was approximated after 1 h cell adhesion and analogous to the adhesion strength measurements, the highest of 664 nN after 6 h. Generally, cell adhesion decreased at incubation times longer than 6 h before an increase after 48 h was observed once again. CONCLUSIONS: Differences in adhesion behavior over time indicate dynamic cell-substrate interactions because of cell migration and proliferation processes. The study stresses the importance of calculating the adhesion force rather than shear stress to gain more expressive data regarding cell adhesion.


Subject(s)
Osteoblasts/physiology , Prostheses and Implants , Titanium , Alloys , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Adhesion/drug effects , Humans , Materials Testing , Microscopy, Electron, Scanning/instrumentation , Osteoblasts/drug effects , Osteoblasts/metabolism , Shear Strength/drug effects , Surface Properties , Time Factors , Titanium/chemistry , Titanium/pharmacology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...