Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(17)2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37685248

ABSTRACT

Cocoa bean shell (CBS) is a by-product from cocoa processing which is abundant in Indonesia, one of the largest cocoa-producing countries. It has a great potential for being processed into food ingredients due to its comparable composition to cocoa nibs. The present study was conducted to identify the proximate composition and bioactive compounds in CBS produced at several cocoa industries in Indonesia utilizing different cocoa varieties (Criollo and Forastero) and processing techniques (fermented, non-fermented, pulp washing, and drying), which remain unknown. The results showed that the CBS derived from roasted Criollo cocoa pods in the Kendeng Lembu cocoa industry had ash and protein content of about 8.21% and 18.79%, respectively, which was higher than other industries. Additionally, the concentration of bioactive substances was higher here than it was elsewhere. This included total phenolic (136.2 mg GAE g-1) and theobromine (22.50 mg g-1). The lowest ash and protein concentration found in CBS was from Forastero cocoa pods, non-fermented like Sulawesi cocoa. These values were 6.48% and 15.70%, respectively. The concentration of theobromine (15.40 mg g-1) was also lower compared to other industries.

2.
Polymers (Basel) ; 15(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37571131

ABSTRACT

Corn starch-based nanocomposite films usually have low moisture barrier properties. Adding virgin coconut oil (VCO) as a hydrophobic component can improve the nanocomposite film's characteristics, especially the film's permeability and elongation properties. This study aimed to determine the role of VCO with various concentrations (0, 3, 5 wt%) on the physical, mechanical, and water vapor transmission characteristics of corn starch/NCC-based nanocomposite films. Adding 3% VCO to the film showed the lowest WVTR value by 4.721 g/m2.h. At the same time, the value of tensile strength was 4.243 MPa, elongation 69.28%, modulus of elasticity 0.062 MPa, thickness 0.219 mm, lightness 98.77, and water solubility 40.51%. However, adding 5 wt% VCO to the film increased the film's elongation properties by 83.87%. The SEM test showed that adding VCO formed a finer structure with pores in several areas. The FTIR films showed that adding VCO caused a slightly higher absorption peak shift at the O-H groups and new absorption peaks at wave numbers 1741 cm-1 and 1742 cm-1. The results of this study may provide opportunities for the development of nanocomposite films as biodegradable packaging in the future.

3.
Saudi J Biol Sci ; 28(12): 6765-6773, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34866975

ABSTRACT

ß-glucan is a natural polysaccharide derivative composed of a group of glucose monomers with ß-glycoside bonds that can be synthesized intra- or extra-cellular by various microorganisms such as yeasts, bacteria, and moulds. The study aimed to discover the potential of various microorganisms such as Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto in producing ß-glucan. The experimental method used and the data were analyzed descriptively. The four microorganisms above were cultured under a submerged state in Yeast glucose (YG) broth for 120 h at 30 °C with 200 rpm agitation. During the growth, several parameters were examined including total population by optical density, the pH, and glucose contents of growth media. ß-glucan was extracted using acid-alkaline methods from the growth media then the weight was measured. The results showed that S. cerevisiae, A. oryzae X. campestris, and B. natto were prospective for ß-glucans production in submerged fermentation up to 120 h. The highest ß-glucans yield was shown by B. natto (20.38%) with the ß-glucans mass of 1.345 ± 0.08 mg and globular diameter of 600 µm. The highest ß-glucan mass was achieved by A. oryzae of 82.5 ± 0.03 mg with the total population in optical density of 0.1246, a final glucose level of 769 ppm, the pH of 6.67, and yield of 13.97% with a globular diameter of 1400 µm.

SELECTION OF CITATIONS
SEARCH DETAIL
...