Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1170475, 2023.
Article in English | MEDLINE | ID: mdl-37483604

ABSTRACT

During B cell development in bone marrow, large precursor B cells (large Pre-B cells) proliferate rapidly, exit the cell cycle, and differentiate into non-proliferative (quiescent) small Pre-B cells. Dysregulation of this process may result in the failure to produce functional B cells and pose a risk of leukemic transformation. Here, we report that AT rich interacting domain 5B (ARID5B), a B cell acute lymphoblastic leukemia (B-ALL) risk gene, regulates B cell development at the Pre-B stage. In both mice and humans, we observed a significant upregulation of ARID5B expression that initiates at the Pre-B stage and is maintained throughout later stages of B cell development. In mice, deletion of Arid5b in vivo and ex vivo exhibited a significant reduction in the proportion of immature B cells but an increase in large and small Pre-B cells. Arid5b inhibition ex vivo also led to an increase in proliferation of both Pre-B cell populations. Metabolic studies in mouse and human bone marrow revealed that fatty acid uptake peaked in proliferative B cells then decreased during non-proliferative stages. We showed that Arid5b ablation enhanced fatty acid uptake and oxidation in Pre-B cells. Furthermore, decreased ARID5B expression was observed in tumor cells from B-ALL patients when compared to B cells from non-leukemic individuals. In B-ALL patients, ARID5B expression below the median was associated with decreased survival particularly in subtypes originating from Pre-B cells. Collectively, our data indicated that Arid5b regulates fatty acid metabolism and proliferation of Pre-B cells in mice, and reduced expression of ARID5B in humans is a risk factor for B cell leukemia.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Transcription Factors , Animals , Humans , Mice , Cell Proliferation , DNA-Binding Proteins/metabolism , Fatty Acids , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cells, B-Lymphoid/metabolism , Transcription Factors/metabolism
2.
Front Oncol ; 12: 1045016, 2022.
Article in English | MEDLINE | ID: mdl-36439420

ABSTRACT

Total body irradiation (TBI) is a commonly used conditioning regimen for hematopoietic stem cell transplant (HCT), but dose heterogeneity and long-term organ toxicity pose significant challenges. Total marrow irradiation (TMI), an evolving radiation conditioning regimen for HCT can overcome the limitations of TBI by delivering the prescribed dose targeted to the bone marrow (BM) while sparing organs at risk. Recently, our group demonstrated that TMI up to 20 Gy in relapsed/refractory AML patients was feasible and efficacious, significantly improving 2-year overall survival compared to the standard treatment. Whether such dose escalation is feasible in elderly patients, and how the organ toxicity profile changes when switching to TMI in patients of all ages are critical questions that need to be addressed. We used our recently developed 3D image-guided preclinical TMI model and evaluated the radiation damage and its repair in key dose-limiting organs in young (~8 weeks) and old (~90 weeks) mice undergoing congenic bone marrow transplant (BMT). Engraftment was similar in both TMI and TBI-treated young and old mice. Dose escalation using TMI (12 to 16 Gy in two fractions) was well tolerated in mice of both age groups (90% survival ~12 Weeks post-BMT). In contrast, TBI at the higher dose of 16 Gy was particularly lethal in younger mice (0% survival ~2 weeks post-BMT) while old mice showed much more tolerance (75% survival ~13 weeks post-BMT) suggesting higher radio-resistance in aged organs. Histopathology confirmed worse acute and chronic organ damage in mice treated with TBI than TMI. As the damage was alleviated, the repair processes were augmented in the TMI-treated mice over TBI as measured by average villus height and a reduced ratio of relative mRNA levels of amphiregulin/epidermal growth factor (areg/egf). These findings suggest that organ sparing using TMI does not limit donor engraftment but significantly reduces normal tissue damage and preserves repair capacity with the potential for dose escalation in elderly patients.

3.
Mol Metab ; 66: 101612, 2022 12.
Article in English | MEDLINE | ID: mdl-36243318

ABSTRACT

OBJECTIVE: Adipose tissue is the largest endocrine organ. When activated by cancer cells, adipocytes secrete adipocytokines and release fatty acids, which are then transferred to cancer cells and used for structural and biochemical support. How this metabolic symbiosis between cancer cells and adipocytes affects skeletal muscle and thermogenesis during cancer cachexia is unknown. Cancer cachexia is a multiorgan syndrome and how the communication between tissues is established has yet to be determined. We investigated adipose tissue secretory factors and explored their role in crosstalk of adipocytes, muscle, and tumor during pancreatic cancer cachexia. METHODS: We used a pancreatic cancer cachexia mouse model generated by syngenic implantation of pancreatic ductal adenocarcinoma (PDAC) cells (KPC) intraperitoneally into C57BL/6 mice and Lcn2-knockout mice. For in vitro studies, adipocytes (3T3-L1 and primary adipocytes), cachectic cancer cells (Panc0203), non-cachectic cancer cells (Du145 cells), and skeletal muscle cells (C2C12 myoblasts) were used. RESULTS: To identify molecules involved in the crosstalk of adipose tissue with muscle and tumors, we treated 3T3-L1 adipocytes with conditioned medium (CM) from cancer cells. Upon screening the secretomes from PDAC-induced adipocytes, several adipocytokines were identified, including lipocalin 2 (Lcn2). We investigated Lcn2 as a potential mediator of cachexia induced by adipocytes in response to PDAC. During tumor progression, mice exhibited a decline in body weight gain, which was accompanied by loss of adipose and muscle tissues. Tumor-harboring mice developed drastic hypothermia because of a dramatic loss of fat in brown adipose tissue (BAT) and suppression of the thermogenesis pathway. We inhibited Lcn2 with an anti-Lcn2 antibody neutralization or genomic ablation in mice. Lcn2 deficiency significantly improved body temperature in tumor-bearing mice, which was supported by the increased expression of Ucp1 and ß3-adrenergic receptor in BAT. In addition, Lcn2 inhibition abrogated the loss of fat and muscle in tumor-bearing mice. In contrast to tumor-bearing WT mice, the corresponding Lcn2-knockout mice showed reduced ATGL expression in iWAT and decreased the expression of muscle atrophy molecular markers MuRF-1 and Fbx32. CONCLUSIONS: This study showed that Lcn2 is causally involved in the dysregulation of adipose tissue-muscle-tumor crosstalk during pancreatic cancer cachexia. Therapeutic targets that suppress Lcn2 may minimize the progression of cachexia.


Subject(s)
Cachexia , Hypothermia , Lipocalin-2 , Pancreatic Neoplasms , Animals , Mice , Adipocytes/metabolism , Adipokines/metabolism , Adipose Tissue, Brown/metabolism , Cachexia/etiology , Cachexia/metabolism , Hypothermia/complications , Hypothermia/metabolism , Lipocalin-2/genetics , Lipocalin-2/metabolism , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , Pancreatic Neoplasms/complications , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms
4.
Sci Rep ; 11(1): 1161, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441918

ABSTRACT

MYOD-induced microRNA-494-3p expression inhibits fast oxidative myotube formation by downregulating myosin heavy chain 2 (MYH2) in human induced pluripotent stem cells (hiPSCs) during skeletal myogenesis. However, the molecular mechanisms regulating MYH2 expression via miR-494-3p remain unknown. Here, using bioinformatic analyses, we show that miR-494-3p potentially targets the transcript of the E1A-binding protein p300 at its 3'-untranslated region (UTR). Myogenesis in hiPSCs with the Tet/ON-myogenic differentiation 1 (MYOD1) gene (MyoD-hiPSCs) was induced by culturing them in doxycycline-supplemented differentiation medium for 7 days. p300 protein expression decreased after transient induction of miR-494-3p during myogenesis. miR-494-3p mimics decreased the levels of p300 and its downstream targets MYOD and MYH2 and myotube formation efficiency. p300 knockdown decreased myotube formation efficiency, MYH2 expression, and basal oxygen consumption rate. The binding of miR-494-3p to the wild type p300 3'-UTR, but not the mutated site, was confirmed using luciferase assay. Overexpression of p300 rescued the miR-494-3p mimic-induced phenotype in MyoD-hiPSCs. Moreover, miR-494-3p mimic reduced the levels of p300, MYOD, and MYH2 in skeletal muscles in mice. Thus, miR-494-3p might modulate MYH2 expression and fast oxidative myotube formation by directly regulating p300 levels during skeletal myogenesis in MyoD-hiPSCs and murine skeletal muscle tissues.


Subject(s)
E1A-Associated p300 Protein/metabolism , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Oxidative Stress/genetics , 3' Untranslated Regions/genetics , Animals , Cell Differentiation/genetics , Cell Line , Cell Proliferation/genetics , Down-Regulation/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Muscle Development/genetics , MyoD Protein/genetics , Myoblasts/metabolism
5.
Am J Physiol Endocrinol Metab ; 316(5): E956-E966, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30860879

ABSTRACT

The intestinal microbiome produces short-chain fatty acids (SCFAs) from dietary fiber and has specific effects on other organs. During endurance exercise, fatty acids, glucose, and amino acids are major energy substrates. However, little is known about the role of SCFAs during exercise. To investigate this, mice were administered either multiple antibiotics or a low microbiome-accessible carbohydrate (LMC) diet, before endurance testing on a treadmill. Two-week antibiotic treatment significantly reduced endurance capacity versus the untreated group. In the cecum acetate, propionate, and butyrate became almost undetectable in the antibiotic-treated group, plasma SCFA concentrations were lower, and the microbiome was disrupted. Similarly, 6-wk LMC treatment significantly reduced exercise capacity, and fecal and plasma SCFA concentrations. Continuous acetate but not saline infusion in antibiotic-treated mice restored their exercise capacity (P < 0.05), suggesting that plasma acetate may be an important energy substrate during endurance exercise. In addition, running time was significantly improved in LMC-fed mice by fecal microbiome transplantation from others fed a high microbiome-accessible carbohydrate diet and administered a single portion of fermentable fiber (P < 0.05). In conclusion, the microbiome can contribute to endurance exercise by producing SCFAs. Our findings provide new insight into the effects of the microbiome on systemic metabolism.


Subject(s)
Acetates/metabolism , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/physiology , Physical Conditioning, Animal , Physical Endurance/physiology , Animals , Anti-Bacterial Agents/pharmacology , Butyrates/metabolism , Dietary Fiber/metabolism , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/drug effects , Mice , Physical Endurance/drug effects , Propionates/metabolism
6.
Sci Rep ; 8(1): 15096, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30305668

ABSTRACT

Mitochondria are critical in heat generation in brown and beige adipocytes. Mitochondrial number and function are regulated in response to external stimuli, such as cold exposure and ß3 adrenergic receptor agonist. However, the molecular mechanisms regulating mitochondrial biogenesis during browning, especially by microRNAs, remain unknown. We investigated the role of miR-494-3p in mitochondrial biogenesis during adipogenesis and browning. Intermittent mild cold exposure of mice induced PPARγ coactivator1-α (PGC1-α) and mitochondrial TFAM, PDH, and ANT1/2 expression along with uncoupling protein-1 (Ucp1) in inguinal white adipose tissue (iWAT). miR-494-3p levels were significantly downregulated in iWAT upon cold exposure (p < 0.05). miR-494-3p overexpression substantially reduced PGC1-α expression and its downstream targets TFAM, PDH and MTCO1 in 3T3-L1 white and beige adipocytes (p < 0.05). miR-494-3p inhibition in 3T3-L1 white adipocytes resulted in increased PDH (p < 0.05). PGC1-α, TFAM and Ucp1 mRNA levels were robustly downregulated by miR-494-3p overexpression in 3T3-L1 beige adipocytes, along with strongly decreased oxygen consumption rate. PGC1-α and Ucp1 proteins were downregulated by miR-494-3p in primary beige cells (p < 0.05). Luciferase assays confirmed PGC1-α as a direct gene target of miR-494-3p. Our findings demonstrate that decreased miR-494-3p expression during browning regulates mitochondrial biogenesis and thermogenesis through PGC1-α.


Subject(s)
Adipocytes, Beige/metabolism , MicroRNAs/genetics , Mitochondria/genetics , Mitochondria/metabolism , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction , Thermogenesis , 3' Untranslated Regions , 3T3-L1 Cells , Animals , Gene Expression , Genes, Reporter , Male , Mice , Models, Biological , Oxygen Consumption , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , RNA Interference , RNA, Messenger/genetics , Temperature
7.
PLoS One ; 13(8): e0201661, 2018.
Article in English | MEDLINE | ID: mdl-30071087

ABSTRACT

BACKGROUND: Teff is a staple food in Ethiopia that is rich in dietary fiber. Although gaining popularity in Western countries because it is gluten-free, the effects of teff on glucose metabolism remain unknown. AIM: To evaluate the effects of teff on body weight and glucose metabolism compared with an isocaloric diet containing wheat. RESULTS: Mice fed teff weighed approximately 13% less than mice fed wheat (p < 0.05). The teff-based diet improved glucose tolerance compared with the wheat group with normal chow but not with a high-fat diet. Reduced adipose inflammation characterized by lower expression of TNFα, Mcp1, and CD11c, together with higher levels of cecal short chain fatty acids such as acetate, compared with the control diet containing wheat after 14 weeks of dietary treatment. In addition, beige adipocyte formation, characterized by increased expression of Ucp-1 (~7-fold) and Cidea (~3-fold), was observed in the teff groups compared with the wheat group. Moreover, a body-weight matched experiment revealed that teff improved glucose tolerance in a manner independent of body weight reduction after 6 weeks of dietary treatment. Enhanced beige adipocyte formation without improved adipose inflammation in a body-weight matched experiment suggests that the improved glucose metabolism was a consequence of beige adipocyte formation, but not solely through adipose inflammation. However, these differences between teff- and wheat-containing diets were not observed in the high-fat diet group. CONCLUSIONS: Teff improved glucose tolerance likely by promoting beige adipocyte formation and improved adipose inflammation.


Subject(s)
Adipose Tissue, Beige/metabolism , Carbohydrate Metabolism/drug effects , Dietary Fiber/pharmacology , Eragrostis/metabolism , Adipose Tissue, Beige/pathology , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Blood Glucose/analysis , Body Temperature , CD11c Antigen/genetics , CD11c Antigen/metabolism , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/chemistry , Feces/chemistry , Glucose Tolerance Test , Inflammation/metabolism , Inflammation/prevention & control , Male , Mice , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
8.
Biochem Biophys Res Commun ; 495(2): 2098-2104, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29253568

ABSTRACT

O-GlcNAcylation is a post-translational modification that is characterized by the addition of N-acetylglucosamine (GlcNAc) to proteins by O-GlcNAc transferase (Ogt). The degree of O-GlcNAcylation is thought to be associated with glucotoxicity and diabetic complications, because GlcNAc is produced by a branch of the glycolytic pathway. However, its role in skeletal muscle has not been fully elucidated. In this study, we created skeletal muscle-specific Ogt knockout (Ogt-MKO) mice and analyzed their glucose metabolism. During an intraperitoneal glucose tolerance test, blood glucose was slightly lower in Ogt-MKO mice than in control Ogt-flox mice. High fat diet-induced obesity and insulin resistance were reversed in Ogt-MKO mice. In addition, 12-month-old Ogt-MKO mice had lower adipose and body mass. A single bout of exercise significantly reduced blood glucose in Ogt-MKO mice, probably because of higher AMP-activated protein kinase α (AMPKα) protein expression. Furthermore, intraperitoneal injection of 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, resulted in a more marked decrease in blood glucose levels in Ogt-MKO mice than in controls. Finally, Ogt knockdown by siRNA in C2C12 myotubes significantly increased protein expression of AMPKα, glucose uptake and oxidation. In conclusion, loss of O-GlcNAcylation facilitates glucose utilization in skeletal muscle, potentially through AMPK activation. The inhibition of O-GlcNAcylation in skeletal muscle may have an anti-diabetic effect, through an enhancement of glucose utilization during exercise.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/physiology , N-Acetylglucosaminyltransferases/metabolism , Physical Exertion/physiology , Acylation/physiology , Animals , Blood Glucose/metabolism , Enzyme Activation/physiology , Gene Expression Regulation, Enzymologic/physiology , Male , Mice , Mice, Knockout , Physical Conditioning, Animal/methods
9.
Diabetes ; 66(9): 2351-2362, 2017 09.
Article in English | MEDLINE | ID: mdl-28637651

ABSTRACT

Adipose tissues considerably influence metabolic homeostasis, and both white (WAT) and brown (BAT) adipose tissue play significant roles in lipid and glucose metabolism. O-linked N-acetylglucosamine (O-GlcNAc) modification is characterized by the addition of N-acetylglucosamine to various proteins by O-GlcNAc transferase (Ogt), subsequently modulating various cellular processes. However, little is known about the role of O-GlcNAc modification in adipose tissues. Here, we report the critical role of O-GlcNAc modification in cold-induced thermogenesis. Deletion of Ogt in WAT and BAT using adiponectin promoter-driven Cre recombinase resulted in severe cold intolerance with decreased uncoupling protein 1 (Ucp1) expression. Furthermore, Ogt deletion led to decreased mitochondrial protein expression in conjunction with decreased peroxisome proliferator-activated receptor γ coactivator 1-α protein expression. This phenotype was further confirmed by deletion of Ogt in BAT using Ucp1 promoter-driven Cre recombinase, suggesting that O-GlcNAc modification in BAT is responsible for cold-induced thermogenesis. Hypothermia was significant under fasting conditions. This effect was mitigated after normal diet consumption but not after consumption of a fatty acid-rich ketogenic diet lacking carbohydrates, suggesting impaired diet-induced thermogenesis, particularly by fat. In conclusion, O-GlcNAc modification is essential for cold-induced thermogenesis and mitochondrial biogenesis in BAT. Glucose flux into BAT may be a signal to maintain BAT physiological responses.


Subject(s)
Acetylglucosamine/metabolism , Adipose Tissue, Brown/physiology , Cold Temperature , Mitochondria/physiology , N-Acetylglucosaminyltransferases/metabolism , Thermogenesis/physiology , Acetylglucosamine/chemistry , Acetylglucosamine/genetics , Adaptation, Physiological , Animals , Gene Expression Regulation, Enzymologic/physiology , Glucose/metabolism , Mice , Mice, Knockout , N-Acetylglucosaminyltransferases/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...