Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(26): eado0073, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38924399

ABSTRACT

We report on the energy dependence of the photoemission time delay from the single-element layered dielectric HOPG (highly oriented pyrolytic graphite). This system offers the unique opportunity to directly observe the Eisenbud-Wigner-Smith (EWS) time delays related to the bulk electronic band structure without being strongly perturbed by ubiquitous effects of transport, screening, and multiple scattering. We find the experimental streaking time shifts to be sensitive to the modulation of the density of states in the high-energy region (E ≈ 100 eV) of the band structure. The present attosecond chronoscopy experiments reveal an energy-dependent increase of the photoemission time delay when the final state energy of the excited electrons lies in the vicinity of the bandgap providing information difficult to access by conventional spectroscopy. Accompanying simulations further corroborate our interpretation.

2.
Nano Lett ; 22(23): 9679-9684, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36399705

ABSTRACT

We present a first qualitative description of the atomic dynamics in two-dimensional (2D) materials induced by the impact of slow, highly charged ions. We employ a classical molecular dynamics simulation for the motion of the target atoms combined with a Monte Carlo model for the diffusive charge transport within the layer. Depending on the velocity of charge transfer (hopping time or hole mobility) and the number of extracted electrons which, in turn, depends on the charge state of the impinging ions, we find regions of stability of the 2D structure as well as parameter combinations for which nanopore formation due to Coulomb repulsion is predicted.

3.
Nat Commun ; 11(1): 430, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31969568

ABSTRACT

The sub-cycle interaction of light and matter is one of the key frontiers of inquiry made accessible by attosecond science. Here, we show that when light excites a pair of charge carriers inside of a solid, the transition probability is strongly localized to instants slightly after the extrema of the electric field. The extreme temporal localization is utilized in a simple electronic circuit to record the waveforms of infrared to ultraviolet light fields. This form of petahertz-bandwidth field metrology gives access to both the modulated transition probability and its temporal offset from the laser field, providing sub-fs temporal precision in reconstructing the sub-cycle electronic response of a solid state structure.

4.
Nature ; 573(7773): 243-246, 2019 09.
Article in English | MEDLINE | ID: mdl-31511684

ABSTRACT

Owing to its low excitation energy and long radiative lifetime, the first excited isomeric state of thorium-229, 229mTh, can be optically controlled by a laser1,2 and is an ideal candidate for the creation of a nuclear optical clock3, which is expected to complement and outperform current electronic-shell-based atomic clocks4. A nuclear clock will have various applications-such as in relativistic geodesy5, dark matter research6 and the observation of potential temporal variations of fundamental constants7-but its development has so far been impeded by the imprecise knowledge of the energy of 229mTh. Here we report a direct measurement of the transition energy of this isomeric state to the ground state with an uncertainty of 0.17 electronvolts (one standard deviation) using spectroscopy of the internal conversion electrons emitted in flight during the decay of neutral 229mTh atoms. The energy of the transition between the ground state and the first excited state corresponds to a wavelength of 149.7 ± 3.1 nanometres, which is accessible by laser spectroscopy through high-harmonic generation. Our method combines nuclear and atomic physics measurements to advance precision metrology, and our findings are expected to facilitate the application of high-resolution laser spectroscopy on nuclei and to enable the development of a nuclear optical clock of unprecedented accuracy.

5.
J Mod Opt ; 64(10-11): 1054-1060, 2017 Jun 17.
Article in English | MEDLINE | ID: mdl-28814822

ABSTRACT

In this article, we present coherent control of above-threshold photoemission from a tungsten nanotip achieving nearly perfect modulation. Depending on the pulse delay between fundamental ([Formula: see text]) and second harmonic ([Formula: see text]) pulses of a femtosecond fiber laser at the nanotip, electron emission is significantly enhanced or depressed during temporal overlap. Electron emission is studied as a function of pulse delay, optical near-field intensities, DC bias field and final photoelectron energy. Under optimized conditions modulation amplitudes of the electron emission of 97.5% are achieved. Experimental observations are discussed in the framework of quantum-pathway interference supported by local density of states simulations.

6.
Phys Rev Lett ; 117(21): 217601, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27911540

ABSTRACT

We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.

7.
Phys Rev Lett ; 113(8): 087401, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25192124

ABSTRACT

We theoretically investigate the generation of ultrafast currents in insulators induced by strong few-cycle laser pulses. Ab initio simulations based on time-dependent density functional theory give insight into the atomic-scale properties of the induced current signifying a femtosecond-scale insulator-metal transition. We observe the transition from nonlinear polarization currents during the laser pulse at low intensities to tunnelinglike excitation into the conduction band at higher laser intensities. At high intensities, the current persists after the conclusion of the laser pulse considered to be the precursor of the dielectric breakdown on the femtosecond scale. We show that the transferred charge sensitively depends on the orientation of the polarization axis relative to the crystal axis, suggesting that the induced charge separation reflects the anisotropic electronic structure. We find good agreement with very recent experimental data on the intensity and carrier-envelope phase dependence [A. Schiffrin et al., Nature (London) 493, 70 (2013).

8.
J Exp Biol ; 205(Pt 10): 1495-506, 2002 May.
Article in English | MEDLINE | ID: mdl-11976360

ABSTRACT

The kinematics of feeding on fish have been studied in the aquatic feeding specialist Chelus fimbriatus, the fringed turtle, to provide a basic description of complete feeding cycles. Anatomical findings supplement the kinematic results. High-speed video (500 frames x s(-1)) recordings and X-ray film (150 frames x s(-1)) are used to analyse the kinematic variables characterizing head, hyoid, oesophageal and prey movements. The high velocities, especially of mouth opening, the forward thrust of the head and suction of the prey, are unique among turtles and comparable with those of aquatic salamanders and certain fishes (unidirectional feeders, in contrast to Chelus fimbriatus). The expandability of the pharynx and the anterior half of the oesophagus enables a specific type of unidirectional flow, at least during the early stages of the feeding cycle. This considerably improves the feeding performance compared with that of other aquatic turtles. The streamlined shape of the skull, the large hyoid apparatus, the highly reduced tongue and the extremely distensible oesophagus support the kinematics to a great extent, making C. fimbriatus a specialized suction feeder that can be regarded as one endpoint in the feeding evolution of aquatic reptiles.


Subject(s)
Eating/physiology , Feeding Behavior , Fishes/physiology , Animals , Biomechanical Phenomena , Pharynx/physiology , Predatory Behavior , Species Specificity , Time Factors , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...