Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 62(7): 1298-1306, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36892456

ABSTRACT

Iodotyrosine deiodinase (IYD) is unusual in its reliance on flavin to promote reductive dehalogenation of halotyrosines under aerobic conditions. Applications of this activity can be envisioned for bioremediation, but expansion of its specificity requires an understanding of the mechanistic steps that limit the rate of turnover. Key processes capable of controlling steady-state turnover have now been evaluated and described in this study. While proton transfer is necessary for converting the electron-rich substrate into an electrophilic intermediate suitable for reduction, kinetic solvent deuterium isotope effects suggest that this process does not contribute to the overall efficiency of catalysis under neutral conditions. Similarly, reconstituting IYD with flavin analogues demonstrates that a change in reduction potential by as much as 132 mV affects kcat by less than 3-fold. Furthermore, kcat/Km does not correlate with reduction potential and indicates that electron transfer is also not rate determining. Catalytic efficiency is most sensitive to the electronic nature of its substrates. Electron-donating substituents on the ortho position of iodotyrosine stimulate catalysis and conversely electron-withdrawing substituents suppress catalysis. Effects on kcat and kcat/Km range from 22- to 100-fold and fit a linear free-energy correlation with a ρ ranging from -2.1 to -2.8 for human and bacterial IYD. These values are consistent with a rate-determining process of stabilizing the electrophilic and nonaromatic intermediate poised for reduction. Future engineering can now focus on efforts to stabilize this electrophilic intermediate over a broad series of phenolic substrates that are targeted for removal from our environment.


Subject(s)
Iodide Peroxidase , Organic Chemicals , Humans , Iodide Peroxidase/metabolism , Electron Transport , Catalysis , Flavins/metabolism , Kinetics , Substrate Specificity , Oxidation-Reduction
2.
Bioconjug Chem ; 30(9): 2340-2348, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31380623

ABSTRACT

The normal electron-demand Diels-Alder (DA) cycloaddition is a classic transformation routinely used in synthesis; however, applications in biological systems are limited. Here, we report a spiro[2.4]hepta-4,6-diene-containing noncanonical amino acid (SCpHK) capable of efficient incorporation into antibodies and subsequent coupling with maleimide via a DA reaction. SCpHK was stable throughout protein expression in mammalian cells and enabled covalent attachment of maleimide drug-linkers yielding DA antibody-drug conjugates (DA-ADCs) with nearly quantitative conversion in a one-step process. The uncatalyzed DA reaction between SCpHK and maleimide in aqueous buffer was rapid (1.8-5.4 M-1 s-1), and the antibody-drug adduct was stable in rat serum for at least 1 week at 37 °C. Anti-EphA2 DA-ADCs containing AZ1508 or SG3249 maleimide drug-linkers were potent inhibitors of tumor growth in PC3 tumor models in vivo. The DA bioconjugation strategy described here represents a simple method to produce site-specific and stable ADCs with maleimide drug-linkers.


Subject(s)
Immunoconjugates/chemistry , Maleimides/chemistry , Animals , CHO Cells , Cell Survival/drug effects , Cricetulus , Cycloaddition Reaction , Humans , Immunoconjugates/pharmacology , Models, Molecular , PC-3 Cells , Protein Conformation , Spiro Compounds/chemistry
3.
Angew Chem Int Ed Engl ; 58(25): 8489-8493, 2019 06 17.
Article in English | MEDLINE | ID: mdl-31018033

ABSTRACT

Here, we describe a diene-containing noncanonical amino acid (ncAA) capable of undergoing fast and selective normal electron-demand Diels-Alder (DA) reactions following its incorporation into antibodies. A cyclopentadiene derivative of lysine (CpHK) served as the reactive handle for DA transformations and the substrate for genetic incorporation. CpHK incorporated into antibodies with high efficiency and was available for maleimide conjugation or self-reaction depending on position in the amino acid sequence. CpHK at position K274 reacted with the maleimide drug-linker AZ1508 at a rate of ≈79 m-1 s-1 to produce functional antibody-drug conjugates (ADCs) in a one-step process. Incorporation of CpHK at position S239 resulted in dimerization, which covalently linked antibody heavy chains together. The diene ncAA described here is capable of producing therapeutic protein conjugates with clinically validated and widely available maleimide compounds, while also enabling proximity-based stapling through a DA dimerization reaction.


Subject(s)
Alkadienes/chemistry , Amino Acids/chemistry , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Maleimides/chemistry , Cycloaddition Reaction , Dimerization , Humans , Models, Molecular , Molecular Structure
4.
Bioconjug Chem ; 29(7): 2406-2414, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29932647

ABSTRACT

The thiol-maleimide linkage is widely used for antibody-drug conjugate (ADC) production; however, conjugation of maleimide-drugs could be improved by simplified procedures and reliable conjugate stability. Here, we report the evaluation of electron-rich and cyclic dienes that can be appended to antibodies and reacted with maleimide-containing drugs through the Diels-Alder (DA) reaction. Drug conjugation is fast and quantitative due to reaction acceleration in water, and the linkage is more stable in serum than in the corresponding thiol-maleimide adduct with the same drug. ADCs produced using the DA reaction (DAADCs) are effective in vitro and in vivo, demonstrating the utility of this reaction in producing effective biotherapeutics. Given the large number of commercially available maleimide compounds, this conjugation approach could be readily applied to the production of a wide range of antibody (or protein) conjugates.


Subject(s)
Cycloaddition Reaction/methods , Immunoconjugates/chemistry , Maleimides/chemistry , Alkenes , Antibodies/chemistry , Cross-Linking Reagents/chemistry , Drug Stability , Maleimides/therapeutic use , Pharmaceutical Preparations/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...