Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 159(10)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37694742

ABSTRACT

We demonstrate the possibility of a coupling between the magnetization direction of a ferromagnet and the tilting angle of adsorbed achiral molecules. To illustrate the mechanism of the coupling, we analyze a minimal Stoner model that includes Rashba spin-orbit coupling due to the electric field on the surface of the ferromagnet. The proposed mechanism allows us to study magnetic anisotropy of the system with an extended Stoner-Wohlfarth model and argue that adsorbed achiral molecules can change magnetocrystalline anisotropy of the substrate. Our research aims to motivate further experimental studies of the current-free chirality induced spin selectivity effect involving both enantiomers.

2.
Phys Rev Lett ; 131(5): 053201, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37595218

ABSTRACT

We demonstrate that a sodium dimer, Na_{2}(1^{3}Σ_{u}^{+}), residing on the surface of a helium nanodroplet, can be set into rotation by a nonresonant 1.0 ps infrared laser pulse. The time-dependent degree of alignment measured, exhibits a periodic, gradually decreasing structure that deviates qualitatively from that expected for gas-phase dimers. Comparison to alignment dynamics calculated from the time-dependent rotational Schrödinger equation shows that the deviation is due to the alignment dependent interaction between the dimer and the droplet surface. This interaction confines the dimer to the tangential plane of the droplet surface at the point where it resides and is the reason that the observed alignment dynamics is also well described by a 2D quantum rotor model.

3.
Proc Natl Acad Sci U S A ; 120(32): e2300828120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37523549

ABSTRACT

Traditionally, nuclear spin is not considered to affect biological processes. Recently, this has changed as isotopic fractionation that deviates from classical mass dependence was reported both in vitro and in vivo. In these cases, the isotopic effect correlates with the nuclear magnetic spin. Here, we show nuclear spin effects using stable oxygen isotopes (16O, 17O, and 18O) in two separate setups: an artificial dioxygen production system and biological aquaporin channels in cells. We observe that oxygen dynamics in chiral environments (in particular its transport) depend on nuclear spin, suggesting future applications for controlled isotope separation to be used, for instance, in NMR. To demonstrate the mechanism behind our findings, we formulate theoretical models based on a nuclear-spin-enhanced switch between electronic spin states. Accounting for the role of nuclear spin in biology can provide insights into the role of quantum effects in living systems and help inspire the development of future biotechnology solutions.


Subject(s)
Biological Phenomena , Oxygen , Oxygen Isotopes/chemistry , Oxygen/chemistry
4.
J Phys Chem Lett ; 14(27): 6309-6314, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37405449

ABSTRACT

A rotating organic cation and a dynamically disordered soft inorganic cage are the hallmark features of organic-inorganic lead-halide perovskites. Understanding the interplay between these two subsystems is a challenging problem, but it is this coupling that is widely conjectured to be responsible for the unique behavior of photocarriers in these materials. In this work, we use the fact that the polarizability of the organic cation strongly depends on the ambient electrostatic environment to put the molecule forward as a sensitive probe of the local crystal fields inside the lattice cell. We measure the average polarizability of the C/N-H bond stretching mode by means of infrared spectroscopy, which allows us to deduce the character of the motion of the cation molecule, find the magnitude of the local crystal field, and place an estimate on the strength of the hydrogen bond between the hydrogen and halide atoms. Our results pave the way for understanding electric fields in lead-halide perovskites using infrared bond spectroscopy.

5.
J Chem Phys ; 158(13): 134301, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37031113

ABSTRACT

The angulon, a quasiparticle formed by a quantum rotor dressed by the excitations of a many-body bath, can be used to describe an impurity rotating in a fluid or solid environment. Here, we propose a coherent state ansatz in the co-rotating frame, which provides a comprehensive theoretical description of angulons. We reveal the quasiparticle properties, such as energies, quasiparticle weights, and spectral functions, and show that our ansatz yields a persistent decrease in the impurity's rotational constant due to many-body dressing, which is consistent with experimental observations. From our study, a picture of the angulon emerges as an effective spin interacting with a magnetic field that is self-consistently generated by the molecule's rotation. Moreover, we discuss rotational spectroscopy, which focuses on the response of rotating molecules to a laser perturbation in the linear response regime. Importantly, we take into account initial-state interactions that have been neglected in prior studies and reveal their impact on the excitation spectrum. To examine the angulon instability regime, we use a single-excitation ansatz and obtain results consistent with experiments, in which a broadening of spectral lines is observed while phonon wings remain highly suppressed due to initial-state interactions.

6.
Phys Rev Lett ; 130(10): 103202, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36962042

ABSTRACT

We show that the simplest of existing molecules-closed-shell diatomics not interacting with one another-host topological charges when driven by periodic far-off-resonant laser pulses. A periodically kicked molecular rotor can be mapped onto a "crystalline" lattice in angular momentum space. This allows us to define quasimomenta and the band structure in the Floquet representation, by analogy with the Bloch waves of solid-state physics. Applying laser pulses spaced by 1/3 of the molecular rotational period creates a lattice with three atoms per unit cell with staggered hopping. Within the synthetic dimension of the laser strength, we discover Dirac cones with topological charges. These Dirac cones, topologically protected by reflection and time-reversal symmetry, are reminiscent of (although not equivalent to) that seen in graphene. They-and the corresponding edge states-are broadly tunable by adjusting the laser strength and can be observed in present-day experiments by measuring molecular alignment and populations of rotational levels. This paves the way to study controllable topological physics in gas-phase experiments with small molecules as well as to classify dynamical molecular states by their topological invariants.

7.
Phys Rev Lett ; 130(10): 106901, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36962044

ABSTRACT

Lead halide perovskites enjoy a number of remarkable optoelectronic properties. To explain their origin, it is necessary to study how electromagnetic fields interact with these systems. We address this problem here by studying two classical quantities: Faraday rotation and the complex refractive index in a paradigmatic perovskite CH_{3}NH_{3}PbBr_{3} in a broad wavelength range. We find that the minimal coupling of electromagnetic fields to the k·p Hamiltonian is insufficient to describe the observed data even on the qualitative level. To amend this, we demonstrate that there exists a relevant atomic-level coupling between electromagnetic fields and the spin degree of freedom. This spin-electric coupling allows for quantitative description of a number of previous as well as present experimental data. In particular, we use it here to show that the Faraday effect in lead halide perovskites is dominated by the Zeeman splitting of the energy levels and has a substantial beyond-Becquerel contribution. Finally, we present general symmetry-based phenomenological arguments that in the low-energy limit our effective model includes all basis coupling terms to the electromagnetic field in the linear order.

8.
Phys Rev Lett ; 128(24): 243201, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35776471

ABSTRACT

Rotational dynamics of D_{2} molecules inside helium nanodroplets is induced by a moderately intense femtosecond pump pulse and measured as a function of time by recording the yield of HeD^{+} ions, created through strong-field dissociative ionization with a delayed femtosecond probe pulse. The yield oscillates with a period of 185 fs, reflecting field-free rotational wave packet dynamics, and the oscillation persists for more than 500 periods. Within the experimental uncertainty, the rotational constant B_{He} of the in-droplet D_{2} molecule, determined by Fourier analysis, is the same as B_{gas} for an isolated D_{2} molecule. Our observations show that the D_{2} molecules inside helium nanodroplets essentially rotate as free D_{2} molecules.

9.
Adv Mater ; 34(13): e2106629, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35064943

ABSTRACT

A critical overview of the theory of the chirality-induced spin selectivity (CISS) effect, that is, phenomena in which the chirality of molecular species imparts significant spin selectivity to various electron processes, is provided. Based on discussions in a recently held workshop, and further work published since, the status of CISS effects-in electron transmission, electron transport, and chemical reactions-is reviewed. For each, a detailed discussion of the state-of-the-art in theoretical understanding is provided and remaining challenges and research opportunities are identified.

10.
Phys Rev Lett ; 127(16): 160602, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34723592

ABSTRACT

We investigate the effect of coupling between translational and internal degrees of freedom of composite quantum particles on their localization in a random potential. We show that entanglement between the two degrees of freedom weakens localization due to the upper bound imposed on the inverse participation ratio by purity of a quantum state. We perform numerical calculations for a two-particle system bound by a harmonic force in a 1D disordered lattice and a rigid rotor in a 2D disordered lattice. We illustrate that the coupling has a dramatic effect on localization properties, even with a small number of internal states participating in quantum dynamics.

11.
Phys Rev Lett ; 125(1): 013001, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32678640

ABSTRACT

Alignment of OCS, CS_{2}, and I_{2} molecules embedded in helium nanodroplets is measured as a function of time following rotational excitation by a nonresonant, comparatively weak ps laser pulse. The distinct peaks in the power spectra, obtained by Fourier analysis, are used to determine the rotational, B, and centrifugal distortion, D, constants. For OCS, B and D match the values known from IR spectroscopy. For CS_{2} and I_{2}, they are the first experimental results reported. The alignment dynamics calculated from the gas-phase rotational Schrödinger equation, using the experimental in-droplet B and D values, agree in detail with the measurement for all three molecules. The rotational spectroscopy technique for molecules in helium droplets introduced here should apply to a range of molecules and complexes.

12.
J Phys Chem C Nanomater Interfaces ; 124(21): 11716-11721, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32499842

ABSTRACT

Organic materials are known to feature long spin-diffusion times, originating in a generally small spin-orbit coupling observed in these systems. From that perspective, chiral molecules acting as efficient spin selectors pose a puzzle that attracted a lot of attention in recent years. Here, we revisit the physical origins of chiral-induced spin selectivity (CISS) and propose a simple analytic minimal model to describe it. The model treats a chiral molecule as an anisotropic wire with molecular dipole moments aligned arbitrarily with respect to the wire's axes and is therefore quite general. Importantly, it shows that the helical structure of the molecule is not necessary to observe CISS and other chiral nonhelical molecules can also be considered as potential candidates for the CISS effect. We also show that the suggested simple model captures the main characteristics of CISS observed in the experiment, without the need for additional constraints employed in the previous studies. The results pave the way for understanding other related physical phenomena where the CISS effect plays an essential role.

13.
J Chem Phys ; 152(16): 164302, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32357791

ABSTRACT

Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the effective interaction and the resulting correlations between two diatomic molecules immersed in a bath of bosons. By analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system in different parameter regimes and apply several theoretical approaches to describe its properties. Using a Born-Oppenheimer approximation, we investigate the dependence of the effective intermolecular interaction on the rotational state of the two molecules. In the strong-coupling regime, a product-state ansatz shows that the molecules tend to have a strong alignment in the ground state. To investigate the system in the weak-coupling regime, we apply a one-phonon excitation variational ansatz, which allows us to access the energy spectrum. In comparison to the angulon quasiparticle, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. These features are proposed as an experimentally observable signature for the formation of the biangulon quasiparticle. Finally, by using products of single angulon and bare impurity wave functions as basis states, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules.

14.
J Chem Phys ; 148(10): 104307, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29544274

ABSTRACT

Recently it was shown that a molecule rotating in a quantum solvent can be described in terms of the "angulon" quasiparticle [M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017)]. Here we extend the angulon theory to the case of molecules possessing an additional spin-1/2 degree of freedom and study the behavior of the system in the presence of a static magnetic field. We show that exchange of angular momentum between the molecule and the solvent can be altered by the field, even though the solvent itself is non-magnetic. In particular, we demonstrate a possibility to control resonant emission of phonons with a given angular momentum using a magnetic field.

15.
J Chem Phys ; 147(1): 013946, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28688400

ABSTRACT

Iodine (I2) molecules embedded in He nanodroplets are aligned by a 160 ps long laser pulse. The highest degree of alignment, occurring at the peak of the pulse and quantified by ⟨cos2𝜃2D⟩, is measured as a function of the laser intensity. The results are well described by ⟨cos2𝜃2D⟩ calculated for a gas of isolated molecules each with an effective rotational constant of 0.6 times the gas-phase value and at a temperature of 0.4 K. Theoretical analysis using the angulon quasiparticle to describe rotating molecules in superfluid helium rationalizes why the alignment mechanism is similar to that of isolated molecules with an effective rotational constant. A major advantage of molecules in He droplets is that their 0.4 K temperature leads to stronger alignment than what can generally be achieved for gas phase molecules-here demonstrated by a direct comparison of the droplet results to measurements on a ∼1 K supersonic beam of isolated molecules. This point is further illustrated for a more complex system by measurements on 1,4-diiodobenzene and 1,4-dibromobenzene. For all three molecular species studied, the highest values of ⟨cos2𝜃2D⟩ achieved in He droplets exceed 0.96.

16.
Phys Rev Lett ; 118(20): 203203, 2017 May 19.
Article in English | MEDLINE | ID: mdl-28581781

ABSTRACT

Rotation of molecules embedded in helium nanodroplets is explored by a combination of fs laser-induced alignment experiments and angulon quasiparticle theory. We demonstrate that at low fluence of the fs alignment pulse, the molecule and its solvation shell can be set into coherent collective rotation lasting long enough to form revivals. With increasing fluence, however, the revivals disappear-instead, rotational dynamics as rapid as for an isolated molecule is observed during the first few picoseconds. Classical calculations trace this phenomenon to transient decoupling of the molecule from its helium shell. Our results open novel opportunities for studying nonequilibrium solute-solvent dynamics and quantum thermalization.

17.
Phys Rev Lett ; 118(9): 095301, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28306270

ABSTRACT

Understanding the behavior of molecules interacting with superfluid helium represents a formidable challenge and, in general, requires approaches relying on large-scale numerical simulations. Here, we demonstrate that experimental data collected over the last 20 years provide evidence that molecules immersed in superfluid helium form recently predicted angulon quasiparticles [Phys. Rev. Lett. 114, 203001 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.203001]. Most important, casting the many-body problem in terms of angulons amounts to a drastic simplification and yields effective molecular moments of inertia as straightforward analytic solutions of a simple microscopic Hamiltonian. The outcome of the angulon theory is in good agreement with experiment for a broad range of molecular impurities, from heavy to medium-mass to light species. These results pave the way to understanding molecular rotation in liquid and crystalline phases in terms of the angulon quasiparticle.

18.
Chemphyschem ; 17(22): 3649-3654, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27755652

ABSTRACT

We study a polar molecule immersed in a superfluid environment, such as a helium nanodroplet or a Bose-Einstein condensate, in the presence of a strong electrostatic field. We show that coupling of the molecular pendular motion, induced by the field, to the fluctuating bath leads to formation of pendulons-spherical harmonic librators dressed by a field of many-particle excitations. We study the behavior of the pendulon in a broad range of molecule-bath and molecule-field interaction strengths, and reveal that its spectrum features a series of instabilities which are absent in the field-free case of the angulon quasiparticle. Furthermore, we show that an external field allows to fine-tune the positions of these instabilities in the molecular rotational spectrum. This opens the door to detailed experimental studies of redistribution of orbital angular momentum in many-particle systems.

19.
Phys Rev Lett ; 114(20): 203001, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26047225

ABSTRACT

We develop a microscopic theory describing a quantum impurity whose rotational degree of freedom is coupled to a many-particle bath. We approach the problem by introducing the concept of an "angulon"-a quantum rotor dressed by a quantum field-and reveal its quasiparticle properties using a combination of variational and diagrammatic techniques. Our theory predicts renormalization of the impurity rotational structure, such as that observed in experiments with molecules in superfluid helium droplets, in terms of a rotational Lamb shift induced by the many-particle environment. Furthermore, we discover a rich many-body-induced fine structure, emerging in rotational spectra due to a redistribution of angular momentum within the quantum many-body system.

20.
Phys Rev Lett ; 113(7): 070401, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25170691

ABSTRACT

We propose a technique for engineering momentum-dependent dissipation in Bose-Einstein condensates with nonlocal interactions. The scheme relies on the use of momentum-dependent dark states in close analogy to velocity-selective coherent population trapping. During the short-time dissipative dynamics, the system is driven into a particular finite-momentum phonon mode, which in real space corresponds to an ordered structure with nonlocal density-density correlations. Dissipation-induced ordering can be observed and studied in present-day experiments using cold atoms with dipole-dipole or off-resonant Rydberg interactions. Because of its dissipative nature, the ordering does not require artificial breaking of translational symmetry by an optical lattice or harmonic trap. This opens up a perspective of direct cooling of quantum gases into strongly interacting phases.

SELECTION OF CITATIONS
SEARCH DETAIL
...