Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 1138, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36878897

ABSTRACT

Adjuvant-containing subunit vaccines represent a promising approach for protection against tuberculosis (TB), but current candidates require refrigerated storage. Here we present results from a randomized, double-blinded Phase 1 clinical trial (NCT03722472) evaluating the safety, tolerability, and immunogenicity of a thermostable lyophilized single-vial presentation of the ID93 + GLA-SE vaccine candidate compared to the non-thermostable two-vial vaccine presentation in healthy adults. Participants were monitored for primary, secondary, and exploratory endpoints following intramuscular administration of two vaccine doses 56 days apart. Primary endpoints included local and systemic reactogenicity and adverse events. Secondary endpoints included antigen-specific antibody (IgG) and cellular immune responses (cytokine-producing peripheral blood mononuclear cells and T cells). Both vaccine presentations are safe and well tolerated and elicit robust antigen-specific serum antibody and Th1-type cellular immune responses. Compared to the non-thermostable presentation, the thermostable vaccine formulation generates greater serum antibody responses (p < 0.05) and more antibody-secreting cells (p < 0.05). In this work, we show the thermostable ID93 + GLA-SE vaccine candidate is safe and immunogenic in healthy adults.


Subject(s)
Immunogenicity, Vaccine , Tuberculosis Vaccines , Vaccines, Subunit , Adult , Humans , Adjuvants, Immunologic/adverse effects , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/therapeutic use , Antibodies/immunology , Antibody-Producing Cells/immunology , Leukocytes, Mononuclear/immunology , Tuberculosis Vaccines/adverse effects , Tuberculosis Vaccines/immunology , Tuberculosis Vaccines/pharmacology , Tuberculosis Vaccines/therapeutic use , Immunogenicity, Vaccine/immunology , Treatment Outcome , Healthy Volunteers , Temperature , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/adverse effects , Vaccines, Subunit/immunology , Vaccines, Subunit/pharmacology , Vaccines, Subunit/therapeutic use , Double-Blind Method
2.
PLoS Pathog ; 16(3): e1008373, 2020 03.
Article in English | MEDLINE | ID: mdl-32150583

ABSTRACT

Lasting protection has long been a goal for malaria vaccines. The major surface antigen on Plasmodium falciparum sporozoites, the circumsporozoite protein (PfCSP), has been an attractive target for vaccine development and most protective antibodies studied to date interact with the central NANP repeat region of PfCSP. However, it remains unclear what structural and functional characteristics correlate with better protection by one antibody over another. Binding to the junctional region between the N-terminal domain and central NANP repeats has been proposed to result in superior protection: this region initiates with the only NPDP sequence followed immediately by NANP. Here, we isolated antibodies in Kymab mice immunized with full-length recombinant PfCSP and two protective antibodies were selected for further study with reactivity against the junctional region. X-ray and EM structures of two monoclonal antibodies, mAb667 and mAb668, shed light on their differential affinity and specificity for the junctional region. Importantly, these antibodies also bind to the NANP repeat region with equal or better affinity. A comparison with an NANP-only binding antibody (mAb317) revealed roughly similar but statistically distinct levels of protection against sporozoite challenge in mouse liver burden models, suggesting that junctional antibody protection might relate to the ability to also cross-react with the NANP repeat region. Our findings indicate that additional efforts are necessary to isolate a true junctional antibody with no or much reduced affinity to the NANP region to elucidate the role of the junctional epitope in protection.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Protozoan/chemistry , Binding Sites, Antibody , Epitopes/chemistry , Plasmodium falciparum/chemistry , Protozoan Proteins/chemistry , Animals , Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Protozoan/immunology , Epitopes/immunology , Female , Male , Mice , Mice, Transgenic , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Structure-Activity Relationship
3.
Nat Commun ; 8(1): 1568, 2017 11 16.
Article in English | MEDLINE | ID: mdl-29146922

ABSTRACT

The Plasmodium falciparum Pfs25 protein (Pfs25) is a leading malaria transmission-blocking vaccine antigen. Pfs25 vaccination is intended to elicit antibodies that inhibit parasite development when ingested by Anopheles mosquitoes during blood meals. The Pfs25 three-dimensional structure has remained elusive, hampering a molecular understanding of its function and limiting immunogen design. We report six crystal structures of Pfs25 in complex with antibodies elicited by immunization via Pfs25 virus-like particles in human immunoglobulin loci transgenic mice. Our structural findings reveal the fine specificities associated with two distinct immunogenic sites on Pfs25. Importantly, one of these sites broadly overlaps with the epitope of the well-known 4B7 mouse antibody, which can be targeted simultaneously by antibodies that target a non-overlapping site to additively increase parasite inhibition. Our molecular characterization of inhibitory antibodies informs on the natural disposition of Pfs25 on the surface of ookinetes and provides the structural blueprints to design next-generation immunogens.


Subject(s)
Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Animals , Antibodies, Blocking/chemistry , Antibodies, Blocking/immunology , Antibodies, Protozoan/chemistry , Antibodies, Protozoan/immunology , Crystallography, X-Ray , Female , HEK293 Cells , Humans , Immunization , Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Male , Mice, Transgenic , Plasmodium falciparum/metabolism , Protein Binding , Protein Domains , Protozoan Proteins/chemistry
4.
Sci Rep ; 7(1): 7998, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28801554

ABSTRACT

A recent study of the RTS,S malaria vaccine, which is based on the circumsporozoite protein (CSP), demonstrated an increase in efficacy from 50-60% to 80% when using a delayed fractional dose regimen, in which the standard 0-1-2 month immunization schedule was modified to a 0-1-7 month schedule and the third immunization was delivered at 20% of the full dose. Given the role that antibodies can play in RTS,S-induced protection, we sought to determine how the modified regimen alters IgG subclasses and serum opsonophagocytic activity (OPA). Previously, we showed that lower CSP-mediated OPA was associated with protection in an RTS,S study. Here we report that the delayed fractional dose regimen resulted in decreased CSP-mediated OPA and an enhanced CSP-specific IgG4 response. Linear regression modeling predicted that CSP-specific IgG1 promote OPA, and that CSP-specific IgG4 interferes with OPA, which we subsequently confirmed by IgG subclass depletion. Although the role of IgG4 antibodies and OPA in protection is still unclear, our findings, combined with previous results that the delayed fractional dose increases CSP-specific antibody avidity and somatic hypermutation frequency in CSP-specific B cells, demonstrate how changes in vaccine regimen alone can significantly alter the quality of antibody responses to improve vaccine efficacy.


Subject(s)
Immunoglobulin G/immunology , Malaria Vaccines/administration & dosage , Phagocytosis , Vaccines, Synthetic/administration & dosage , Adolescent , Adult , Antibodies, Protozoan/immunology , Antibody Affinity , Female , Humans , Malaria Vaccines/adverse effects , Malaria Vaccines/immunology , Male , Middle Aged , Opsonin Proteins/immunology , Protozoan Proteins/immunology , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology
5.
Malar J ; 15(1): 543, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27825382

ABSTRACT

BACKGROUND: The malaria vaccine candidate RTS,S/AS01 (GSK Vaccines) induces high IgG concentration against the circumsporozoite protein (CSP) of Plasmodium falciparum. In human vaccine recipients circulating anti-CSP antibody concentrations are associated with protection against infection but appear not to be the correlate of protection. However, in a humanized mouse model of malaria infection prophylactic administration of a human monoclonal antibody (MAL1C), derived from a RTS,S/AS01-immunized volunteer, directed against the CSP repeat region, conveyed full protection in a dose-dependent manner suggesting that antibodies alone are able to prevent P. falciparum infection when present in sufficiently high concentrations. A competition ELISA was developed to measure the presence of MAL1C-like antibodies in polyclonal sera from RTS,S/AS01 vaccine recipients and study their possible contribution to protection against infection. RESULTS: MAL1C-like antibodies present in polyclonal vaccine-induced sera were evaluated for their ability to compete with biotinylated monoclonal antibody MAL1C for binding sites on the capture antigen consisting of the recombinant protein encompassing 32 NANP repeats of CSP (R32LR). Serum samples were taken at different time points from participants in two RTS,S/AS01 vaccine studies (NCT01366534 and NCT01857869). Vaccine-induced protection status of the study participants was determined based on the outcome of experimental challenge with infected mosquito bites after vaccination. Optimal conditions were established to reliably detect MAL1C-like antibodies in polyclonal sera. Polyclonal anti-CSP antibodies and MAL1C-like antibody content were measured in 276 serum samples from RTS,S/AS01 vaccine recipients using the standard ELISA and MAL-1C competition ELISA, respectively. A strong correlation was observed between the results from these assays. However, no correlation was found between the results of either assay and protection against infection. CONCLUSIONS: The competition ELISA to measure MAL1C-like antibodies in polyclonal sera from RTS,S/AS01 vaccine recipients was robust and reliable but did not reveal the elusive correlate of protection.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Protozoan/blood , Antibody Formation , Antigens, Protozoan/immunology , Enzyme-Linked Immunosorbent Assay/methods , Malaria Vaccines/immunology , Protozoan Proteins/immunology , Vaccines, Synthetic/immunology , Adolescent , Adult , Animals , Antibodies, Protozoan/immunology , Female , Healthy Volunteers , Humans , Malaria Vaccines/administration & dosage , Male , Mice , Middle Aged , Vaccines, Synthetic/administration & dosage , Young Adult
6.
Malar J ; 15: 301, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27245446

ABSTRACT

BACKGROUND: Recent vaccine studies have shown that the magnitude of an antibody response is often insufficient to explain efficacy, suggesting that characteristics regarding the quality of the antibody response, such as its fine specificity and functional activity, may play a major role in protection. Previous studies of the lead malaria vaccine candidate, RTS,S, have shown that circumsporozoite protein (CSP)-specific antibodies and CD4(+) T cell responses are associated with protection, however the role of fine specificity and biological function of CSP-specific antibodies remains to be elucidated. Here, the relationship between fine specificity, opsonization-dependent phagocytic activity and protection in RTS,S-induced antibodies is explored. METHODS: A new method for measuring the phagocytic activity mediated by CSP-specific antibodies in THP-1 cells is presented and applied to samples from a recently completed phase 2 RTS,S/AS01 clinical trial. The fine specificity of the antibody response was assessed using ELISA against three antigen constructs of CSP: the central repeat region, the C-terminal domain and the full-length protein. A multi-parameter analysis of phagocytic activity and fine-specificity data was carried out to identify potential correlates of protection in RTS,S. RESULTS: Results from the newly developed assay revealed that serum samples from RTS,S recipients displayed a wide range of robust and repeatable phagocytic activity. Phagocytic activity was correlated with full-length CSP and C-terminal specific antibody titres, but not to repeat region antibody titres, suggesting that phagocytic activity is primarily driven by C-terminal antibodies. Although no significant difference in overall phagocytic activity was observed with respect to protection, phagocytic activity expressed as 'opsonization index', a relative measure that normalizes phagocytic activity with CS antibody titres, was found to be significantly lower in protected subjects than non-protected subjects. CONCLUSIONS: Opsonization index was identified as a surrogate marker of protection induced by the RTS,S/AS01 vaccine and determined how antibody fine specificity is linked to opsonization activity. These findings suggest that the role of opsonization in protection in the RTS,S vaccine may be more complex than previously thought, and demonstrate how integrating multiple immune measures can provide insight into underlying mechanisms of immunity and protection.


Subject(s)
Antibodies, Protozoan/blood , Malaria Vaccines/immunology , Malaria/prevention & control , Opsonin Proteins/blood , Phagocytosis , Vaccines, Synthetic/immunology , Cell Line , Cohort Studies , Enzyme-Linked Immunosorbent Assay , Humans , Malaria Vaccines/administration & dosage , Vaccines, Synthetic/administration & dosage
7.
Vaccine ; 28(8): 1952-61, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20188251

ABSTRACT

Recently developed viral-vectored HIV vaccine candidates, despite achieving high levels transgene expression and inducing high magnitude immune responses to HIV, have faced limitations related to anti-vector immunity. In contrast, lentiviral vectors (LV) have been shown to be less sensitive to anti-vector neutralizing activity, while displaying desirable characteristics, such as transduction of non-dividing cells, including antigen-presenting cells, and long-term transgene expression. We have developed VRX1023, an HIV-based LV expressing HIV Gag, Pol and Rev under the control of the native HIV LTR. In mice, this vector induced significant mucosal and systemic cellular and humoral responses against HIV after sub-cutaneous injection. Similarly to other viral vectors, this LV candidate can be effectively used in DNA prime, LV boost strategies, where it elicited as high as 21% HIV Gag-specific CD8 responses as measured by intracellular cytokine staining. Moreover, anti-vector immunity is not an obstacle to repeated LV administrations, as shown by improved anti-HIV responses compared to single LV immunization. In head to head comparisons with Ad5 vectors expressing the same vaccine payload, VRX1023 elicited higher and more persistent cellular and antibody responses to HIV than its adenoviral counterpart. In preparation for clinical use, manufacturing scale-up of a highly purified VRX1023 vector lot following cGMP was successfully achieved without altering the robust immunogenicity observed with the research-grade vector. VRX1023, in addition to competing favorably with existing vectors such as Ad5 for anti-HIV immune responses, demonstrates unique features likely to address some of the pitfalls of current vector-based HIV vaccine strategies.


Subject(s)
AIDS Vaccines/immunology , Genetic Vectors , HIV Infections/prevention & control , Lentivirus/immunology , Adenoviridae/immunology , Animals , Antibody Formation/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , Female , HIV Antibodies/blood , HIV Antibodies/immunology , HIV Infections/immunology , Immunity, Cellular , Immunity, Humoral , Immunity, Mucosal , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , Plasmids , Vaccines, DNA/immunology , gag Gene Products, Human Immunodeficiency Virus/immunology
8.
Vaccine ; 28(20): 3617-24, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20051277

ABSTRACT

Viral vectors are considered as one of the major means for the induction of strong immune responses against recombinant antigens by genetic immunization. Among these, lentiviral vectors are particularly attractive vehicles, as they can infect a wide variety of cells and can transduce replicating as well as non-replicating cells. We have engineered VRX1023, an HIV-1-based lentiviral vector (LV) vaccine candidate, to deliver HIV-1 Gag, Pol and Rev antigens under control of the native LTR promoter. While VRX1023 has been shown to elicit strong cell-mediated and humoral immunity as a stand-alone vaccine, we report here its combination in a heterologous prime-boost approach. Its combination with an adenovirus serotype 5 (Ad5)-based vector in the mouse model increased the frequency and polyfunctionality of HIV-specific CD4+ and CD8+ T cells. Homologous prime-boost regimens induced high levels of anti-vector neutralizing antibodies in Ad5-immunized mice, whereas the VSV-G-pseudotyped VRX1023 LV elicited low levels of anti-lentiviral vector neutralization. In addition, the heterologous prime-boost strategy resulted in a 5-fold reduction in Ad5-specific vector neutralization as compared to Ad5 homologous immunization. In conclusion, this study demonstrates that LV and Ad5 vector candidates can be combined in a heterologous immunization regimen, yielding dramatically improved immunogenicity while overcoming anti-vector immunity. These findings may have implications for the development of HIV vaccine regimens in populations with elevated Ad5 seroprevalence or when repeated vector administrations are required.


Subject(s)
AIDS Vaccines/immunology , Adenoviridae/immunology , HIV Infections/prevention & control , Lentivirus/immunology , Animals , Antibodies, Neutralizing/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Female , HIV Antibodies/blood , HIV Infections/immunology , HIV-1/immunology , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Mice , Mice, Inbred BALB C , Neutralization Tests
9.
Vaccine ; 27(25-26): 3443-9, 2009 May 26.
Article in English | MEDLINE | ID: mdl-19201386

ABSTRACT

HIV/AIDS has posed major challenges to the scientific community, both in terms of treatment and prevention. Current drug regimens, while efficacious, are expensive, inaccessible to major parts of the world, induce major side effects, and cannot prevent escape mutants due to lack of compliance and drug fatigue. In the vaccine field, recent setbacks related to the interruption and cancellation of major advanced clinical trials using adenoviral vectors have highlighted the need for new and innovative strategies. Unique features of HIV-based lentiviral vectors (LVs) and the current progress in the LV-based platform development make them an attractive alternative for the further LV-based HIV vaccine development. In preclinical studies, they have demonstrated a high degree of immunogenicity, while overcoming pitfalls faced by other viral vectors. These findings, combined with recent progress in large scale LV production/purification, make this strategy worth considering for further vaccine development.


Subject(s)
AIDS Vaccines/therapeutic use , Genetic Therapy , Genetic Vectors/genetics , HIV Infections/prevention & control , HIV Infections/therapy , Lentivirus/genetics , Humans , Lentivirus/growth & development , Lentivirus/immunology , Safety
10.
Vaccine ; 25(11): 2074-84, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17250935

ABSTRACT

Replication-defective adenovirus vectors, primarily developed from serotype 5 (Ad5) viruses, have been widely used for gene transfer and vaccination approaches. Vectors based on other serotypes of adenovirus could be used in conjunction with, or in place of, Ad5 vectors. In this study, Ad41, an enteric adenovirus usually described as 'non-cultivable' or 'fastidious,' has been successfully cloned, rescued and propagated on 293-ORF6 cells. The complementation capabilities of this cell line allow generation of Ad41 vectors at titers comparable to those obtained for Ad5 vectors. Mice immunized with an Ad41 vector containing an HIV envelope (Env) gene mounted anti-Env cellular and humoral immune responses. Ad41-Env vectors appear to be particularly attractive when used in heterologous prime-boost regimens, where they induce significantly higher cellular immune responses to HIV-Env than Ad5-based regimens. Ad41-based constructs are attractive vaccine vectors alone or in combination with Ad5 adenovectors, since each vector type can provide circumvention of pre-existing immunity to the other.


Subject(s)
AIDS Vaccines/genetics , AIDS Vaccines/immunology , Adenoviridae/genetics , Genetic Vectors , Adenoviridae/growth & development , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Cytokines/biosynthesis , Enzyme-Linked Immunosorbent Assay , Female , HIV Antibodies/blood , HIV Envelope Protein gp120/immunology , Humans , Mice , Mice, Inbred BALB C , Models, Animal , Molecular Sequence Data , Vaccination , Vaccines, Synthetic/immunology
11.
Proc Natl Acad Sci U S A ; 103(46): 17372-7, 2006 Nov 14.
Article in English | MEDLINE | ID: mdl-17090675

ABSTRACT

We report findings from a clinical evaluation of lentiviral vectors in a phase I open-label nonrandomized clinical trial for HIV. This trial evaluated the safety of a conditionally replicating HIV-1-derived vector expressing an antisense gene against the HIV envelope. Five subjects with chronic HIV infection who had failed to respond to at least two antiviral regimens were enrolled. A single i.v. infusion of gene-modified autologous CD4 T cells was well tolerated in all patients. Viral loads were stable, and one subject exhibited a sustained decrease in viral load. CD4 counts remained steady or increased in four subjects, and sustained gene transfer was observed. Self-limiting mobilization of the vector was observed in four of five patients. There is no evidence for insertional mutagenesis after 21-36 months of observation. Immune function improved in four subjects. Lentiviral vectors appear promising for gene transfer to humans.


Subject(s)
Genetic Vectors/genetics , Lentivirus/physiology , Virus Replication/genetics , Adult , Gene Transfer Techniques , HIV-1/genetics , HIV-1/immunology , HIV-1/metabolism , Humans , Middle Aged , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
12.
J Virol ; 77(18): 10078-87, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12941918

ABSTRACT

Replication-defective adenovirus (ADV) vectors represent a promising potential platform for the development of a vaccine for AIDS. Although this vector is typically administered intramuscularly, it would be desirable to induce mucosal immunity by delivery through alternative routes. In this study, the immune response and biodistribution of ADV vectors delivered by different routes were evaluated. ADV vectors expressing human immunodeficiency virus type 1 (HIV-1) Gag, Pol, and Env were delivered intramuscularly or intranasally into mice. Intranasal immunization induced greater HIV-specific immunoglobulin A (IgA) responses in mucosal secretions and sera than in animals with intramuscular injection, which showed stronger systemic cellular and IgG responses. Administration of the vaccine through an intranasal route failed to overcome prior ADV immunity. Animals exposed to ADV prior to vaccination displayed substantially reduced cellular and humoral immune responses to HIV antigens in both groups, though the reduction was greater in animals immunized intranasally. This inhibition was partially overcome by priming with a DNA expression vector expressing HIV-1 Gag, Pol, and Env before boosting with the viral vector. Biodistribution of recombinant adenovirus (rADV) vectors administered intranasally revealed infection of the central nervous system, specifically in the olfactory bulb, possibly via retrograde transport by olfactory neurons in the nasal epithelium, which may limit the utility of this route of delivery of ADV vector-based vaccines.


Subject(s)
AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , Adenoviridae/immunology , Brain/virology , Genetic Vectors/immunology , Immunoglobulin A, Secretory/biosynthesis , Adenoviridae/genetics , Administration, Intranasal , Animals , CD8-Positive T-Lymphocytes/immunology , Female , Genetic Vectors/administration & dosage , Immunization , Injections, Intramuscular , Interferon-gamma/biosynthesis , Mice , Mice, Inbred BALB C , Vaccines, DNA/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...