Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anat ; 244(3): 402-410, 2024 03.
Article in English | MEDLINE | ID: mdl-37990985

ABSTRACT

We report avian cervical vertebrae from the Quercy fissure fillings in France, which are densely covered with villi-like tubercles. Two of these vertebrae stem from a late Eocene site, another lacks exact stratigraphic data. Similar cervical vertebrae occur in avian species from Eocene fossils sites in Germany and the United Kingdom, but the new fossils are the only three-dimensionally preserved vertebrae with pronounced surface sculpturing. So far, the evolutionary significance of this highly bizarre morphology, which is unknown from extant birds, remained elusive, and even a pathological origin was considered. We note the occurrence of similar structures on the skull of the extant African rodent Lophiomys and detail that the tubercles represent true osteological features and characterize a distinctive clade of Eocene birds (Perplexicervicidae). Micro-computed tomography (µCT) shows the tubercles to be associated with osteosclerosis of the cervical vertebrae, which have a very thick cortex and much fewer trabecles and pneumatic spaces than the cervicals of most extant birds aside from some specialized divers. This unusual morphology is likely to have served for strengthening the vertebral spine in the neck region, and we hypothesize that it represents an anti-predator adaptation against the craniocervical killing bite ("neck bite") that evolved in some groups of mammalian predators. Tuberculate vertebrae are only known from the Eocene of Central Europe, which featured a low predation pressure on birds during that geological epoch, as is evidenced by high numbers of flightless avian species. Strengthening of the cranialmost neck vertebrae would have mitigated attacks by smaller predators with weak bite forces, and we interpret these vertebral specializations as the first evidence of "internal bony armor" in birds.


Subject(s)
Biological Evolution , Birds , Animals , X-Ray Microtomography , Birds/anatomy & histology , Cervical Vertebrae/anatomy & histology , Fossils , Phylogeny , Mammals
2.
PeerJ ; 10: e13699, 2022.
Article in English | MEDLINE | ID: mdl-35860040

ABSTRACT

Neobatrachia, a clade representing the majority of extant anuran diversity, is thought to have emerged and diversified during the Cretaceous. Most of the early diversification of neobatrachians occurred in southern Gondwana, especially the regions that are today South America and Africa. Whereas five extinct neobatrachians have been described from the Cretaceous of South America in the last decade, only one is known from Africa. This difference in the known extinct diversity is linked to the lack of well-preserved specimens, understudy of fragmentary remains, and lack of known Cretaceous sites in Africa. Study of fragmentary anuran remains from Africa could allow for the identification of previously unknown neobatrachians, allowing for a better understanding of their early diversification. We reanalysed several previously described anuran specimens from the well-known Kem Kem beds, including using CT-scanning. Through our osteological study, we determined that several cranial bones and vertebrae represent a new hyperossified taxon for which we provide a formal description. Comparison to other hyperossified anurans revealed similarities and affinity of this new taxon with the neobatrachians Beelzebufo (extinct) and Ceratophrys (extant). Phylogenetic analyses supported this affinity, placing the new taxon within Neobatrachia in an unresolved clade of Ceratophryidae. This taxon is the oldest neobatrachian from Africa, and reveals that neobatrachians were already widespread throughout southern Gondwana during the earliest Late Cretaceous.


Subject(s)
Skull , Spine , Animals , Phylogeny , Morocco , Anura
3.
J Anat ; 235(6): 1105-1113, 2019 12.
Article in English | MEDLINE | ID: mdl-31355451

ABSTRACT

The dermoskeleton of the earliest vertebrates is well known but their endoskeleton is thought to have been largely cartilaginous until the Late Silurian. We confirm that the dermal plates of Astraspis are three-layered, with a superficial layer of enameloid and orthodentine, a middle layer of aspidin and a basal layer of lamellar acellular bone. This dermoskeleton is found in association with globular calcified cartilage, indicating the presence of a partially mineralized endoskeleton. In addition to the classical three-layered organization, some dermal plates exhibit alignments of chondrocyte-like lacunae, very similar to a pattern typical of chondroid metaplastic bone, previously unknown in early vertebrates. This discovery implies the presence of a proliferative cartilage, hitherto only known in Osteichthyans. This discovery indicates that a pattern similar to the first step of endochondral ossification was already present in the earliest vertebrates.


Subject(s)
Bone and Bones/anatomy & histology , Calcification, Physiologic , Cartilage/anatomy & histology , Vertebrates/anatomy & histology , Animals , Biological Evolution , Fossils
SELECTION OF CITATIONS
SEARCH DETAIL
...