Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(22): 15664-15679, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38746845

ABSTRACT

There is an incessant demand to keep improving on the heating responses of polymeric magnetic nanoparticles (MNPs) under magnetic excitation, particularly in the pursuit for them to be utilized for clinical hyperthermia applications. Herein, we report the fabrication of a panel of PVP-capped divalent metal-doped MFe2O4 (M ≅ Co, Ni, Zn, Mg, and Sn) MNPs prepared via the Ko-precipitation Hydrolytic Basic (KHB) methodology and assess their magneto-thermal abilities. The physiochemical, structural, morphological, compositional, and magnetic properties of the doped ferrites were fully characterized using various techniques mainly TEM, XRD, EDX, FTIR, and VSM. The obtained doped MNPs exhibited stabilized quasi-spherical sized particles (10-17 nm), pure well-crystallized cubic spinel phases, and high saturation magnetizations (Ms = 26-81 emu g-1). In response to a clinically-safe alternating magnetic field (AMF) (f = 332.8 kHz and H = 170 Oe), distinctive heating responses of these doped ferrites were attained. Hyperthermia temperatures of 42 °C can be reached very fast in only ∼5 min, with heating temperatures slowly increasing to reach up to 55 °C. The highest heating performance was observed for PVP-NiFe2O4 and the lowest for PVP-Sn-doped NPs (SAR values: PVP-NiFe2O4 > PVP-CoFe2O4 > PVP-ZnFe2O4 > PVP-MgFe2O4 > PVP-SnFe2O4). This trend was found to be directly correlated to their observed magnetic saturation and anisotropy. Heating efficiencies and specific SAR values as functions of concentration, frequency, and amplitude were also systematically investigated. Finally, cytotoxicity assay was conducted on aqueous dispersions of the doped ferrite NPs, proving their biocompatibility and safety profiles. The PVPylated metal-doped ferrite NPs prepared here, particularly Ni- and Co-doped ferrites, are promising vehicles for potential combined magnetically-triggered biomedical hyperthermia applications.

2.
Phys Chem Chem Phys ; 26(1): 445-454, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38078519

ABSTRACT

This study investigates the impact of gamma radiation on the electrical properties of InAs/InGaAs quantum dot-based laser structures grown on both GaAs (Sample A) and Si (Sample B) substrates using molecular beam epitaxy. The research explores the electrical characteristics of the lasers before and after being exposed to gamma radiation employing current-voltage (I-V), capacitance-voltage (C-V), deep level transient spectroscopy (DLTS) and Laplace DLTS techniques. The results show that the electrical properties of the lasers change due to gamma radiation exposure, and the extent of the change depends on the substrate used for growth. The I-V results revealed that the ideality factor (n) and built-in voltage were increased in Sample A and Sample B after radiation. Nonetheless, the series resistance (Rs) at room temperature decreased in both samples after radiation. Overall, this study provides valuable insights into the effects of gamma radiation on the electrical properties of InAs/InGaAs quantum dot lasers and highlights the importance of considering substrate materials in the design of radiation-hardened electronic devices.

3.
Nanomaterials (Basel) ; 13(3)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36770414

ABSTRACT

Magnetite nanoparticles (MNPs) exhibit favorable heating responses under magnetic excitation, which makes them particularly suited for various hyperthermia applications. Herein, we report the detailed self-heating mechanisms of MNPs prepared via the Ko-precipitation Hydrolytic Basic (KHB) methodology. The as-prepared MNPs were fully characterized using various spectroscopic techniques including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and vibrating sample magnetometry (VSM). MNPs exhibited stable 15 nm quasi-spherical small-sized particles, pure crystalline cubic Fe3O4 phases, high saturation magnetizations (Ms = ~40 emu·g-1), and superparamagnetic behavior. In response to alternating magnetic fields (AMFs), these MNPs displayed excellent self-heating efficiencies with distinctive heating responses, even when minimal doses of MNPs were used. Heating efficacies and specific absorption rate (SAR) values as functions of concentration, frequency, and amplitude were systematically investigated. Remarkably, within only a few minutes, MNPs (2.5 mg/mL) showed a rapid dissipation of heat energy, giving a maximum intrinsic loss power (ILP) of 4.29 nHm2/kg and a SAR of 261 W/g. Hyperthermia temperatures were rapidly reached in as early as 3 min and could rise up to 80 °C. In addition, Rietveld refinement, Langevin, and linear response theory (LRT) models were studied to further assess the magnetic and heating mechanisms. The LRT model was used to determine the Néel relaxation time (τR = 5.41 × 10-7 s), which was compared to the Brownian relation time value (τB = 11 × 10-7 s), showing that both mechanisms are responsible for heat dissipated by the MNPs. Finally, the cytotoxicity assay was conducted on aqueous dispersions of MNPs, indicating their biocompatibility and low toxicity. Our results strongly suggest that the as-prepared Fe3O4 MNPs are promising vehicles for potential magnetically triggered biomedical hyperthermia applications.

4.
RSC Adv ; 12(55): 35989-36001, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36545116

ABSTRACT

The development of highly efficient, rapid, and recyclable nanocatalysts for effective elimination of toxic environmental contaminants remains a high priority in various industrial applications. Herein, we report the preparation of hybrid mesoporous gold-iron oxide nanoparticles (Au-IO NPs) via the nanocasting "inverse hard-templated replication" approach. Dispersed Au NPs were anchored on amine-functionalized iron oxide incorporated APMS (IO@APMS-amine), followed by etching of the silica template to afford hybrid mesoporous Au-IO NPs. The obtained nanoconstructs were fully characterized using electron microscopy, N2 physisorption, and various spectroscopic techniques. Owing to their magnetic properties, high surface areas, large pore volumes, and mesoporous nature (S BET = 124 m2 g-1, V pore = 0.33 cm3 g-1, and d pore = 4.5 nm), the resulting Au-IO mesostructures were employed for catalytic reduction of nitroarenes (i.e. nitrophenol and nitroaniline), two of the most common toxic organic pollutants. It was found that these Au-IO NPs act as highly efficient nanocatalysts showing exceptional stabilities (>3 months), enhanced catalytic efficiencies in very short times (∼100% conversions within only 25-60 s), and excellent recyclabilities (up to 8 cycles). The kinetic pseudo-first-order apparent reaction rate constants (k app) were calculated to be equal to 8.8 × 10-3 and 23.5 × 10-3 s-1 for 2-nitrophenol and 2-nitroaniline reduction, respectively. To our knowledge, this is considered one of the best and fastest Au-based nanocatalysts reported for the catalytic reduction of nitroarenes, promoted mainly by the synergistic cooperation of their high surface area, large pore volume, mesoporous nature, and enhanced Au-NP dispersions. The unique mesoporous hybrid Au-IO nanoconstructs synthesized here make them novel, stable, and approachable nanocatalyst platform for various catalytic industrial processes.

5.
Int J Mol Sci ; 23(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35955897

ABSTRACT

In this study, we report the synthesis of a new organic-inorganic molecular salt of the clinically used antifungal drug fluconazole, (H2Fluconazole).SnCl6.2H2O. By detailed investigation and analysis of its structural properties, we show that the structure represents a 0D structure built of alternating organic and inorganic zig-zag layers along the crystallographic c-axis and the primary supramolecular synthons in this salt are hydrogen bonding, F···π and halogen bonding interactions. Magnetic measurements reveal the co-existence of weak ferromagnetic behavior at low magnetic field and large diamagnetic contributions, indicating that the synthesized material behaves mainly as a diamagnetic material, with very low magnetic susceptibility and with a band gap energy of 3.6 eV, and the salt is suitable for semiconducting applications. Extensive theoretical study is performed to explain the acceptor donor reactivity of this compound and to predict the Cl-substitution effect by F, Br and I. The energy gap, frontier molecular orbitals (FMOs) and the different chemical reactivity descriptors were evaluated at a high theoretical level. Calculations show that Cl substitution by Br and I generates compounds with more important antioxidant ability and the intramolecular charge transfer linked to the inorganic anion.


Subject(s)
Fluconazole , Halogens , Benchmarking , Density Functional Theory , Halogens/chemistry , Hydrogen Bonding
6.
Materials (Basel) ; 14(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34640088

ABSTRACT

In this report, the heating efficiencies of γ-Fe2O3 and hybrid γ-Fe2O3-TiO2 nanoparticles NPs under an alternating magnetic field (AMF) have been investigated to evaluate their feasible use in magnetic hyperthermia. The NPs were synthesized by a modified sol-gel method and characterized by different techniques. X-ray diffraction (XRD), Mössbauer spectroscopy and electron microscopy analyses confirmed the maghemite (γ-Fe2O3) phase, crystallinity, good uniformity and 10 nm core sizes of the as-synthesized composites. SQUID hysteresis loops showed a non-negligible coercive field and remanence suggesting the ferromagnetic behavior of the particles. Heating efficiency measurements showed that both samples display high heating potentials and reached magnetic hyperthermia (42 °C) in relatively short times with shorter time (~3 min) observed for γ-Fe2O3 compared to γ-Fe2O3-TiO2. The specific absorption rate (SAR) values calculated for γ-Fe2O3 (up to 90 W/g) are higher than that for γ-Fe2O3-TiO2 (~40 W/g), confirming better heating efficiency for γ-Fe2O3 NPs. The intrinsic loss power (ILP) values of 1.57 nHm2/kg and 0.64 nHm2/kg obtained for both nanocomposites are in the range reported for commercial ferrofluids (0.2-3.1 nHm2/kg). Finally, the heating mechanism responsible for NP heat dissipation is explained concluding that both Neel and Brownian relaxations are contributing to heat production. Overall, the obtained high heating efficiencies suggest that the fabricated nanocomposites hold a great potential to be utilized in a wide spectrum of applications, particularly in magnetic photothermal hyperthermia treatments.

7.
Pharmaceutics ; 13(4)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33920033

ABSTRACT

This work reports the fabrication of iron oxide mesoporous magnetic nanostructures (IO-MMNs) via the nano-replication method using acid-prepared mesoporous spheres (APMS) as the rigid silica host and iron (III) nitrate as the iron precursor. The obtained nanosized mesostructures were fully characterized by SEM, TEM, DLS, FTIR, XRD, VSM, and nitrogen physisorption. IO-MMNs exhibited relatively high surface areas and large pore volumes (SBET = 70-120 m2/g and Vpore = 0.25-0.45 cm3/g), small sizes (~300 nm), good crystallinity and magnetization, and excellent biocompatibility. With their intrinsic porosities, high drug loading efficiencies (up to 70%) were achieved and the drug release rates were found to be pH-dependent. Cytotoxicity, confocal microscopy, and flow cytometry experiments against different types of cancerous cells indicated that Dox-loaded IO-MMNs reduced the viability of metastatic MCF-7 and KAIMRC-1 breast as well as HT-29 colon cancer cells, with the least uptake and toxicity towards normal primary cells (up to 4-fold enhancement). These results strongly suggest the potential use of IO-MMNs as promising agents for enhanced and effective drug delivery in cancer theranostics.

8.
Phys Chem Chem Phys ; 18(31): 21331-9, 2016 Aug 03.
Article in English | MEDLINE | ID: mdl-27427175

ABSTRACT

Nanoparticle-based cancer diagnosis-therapy integrative systems (cancer theranostics) represent an emerging approach in oncology. To address this issue in the present work iron oxide (γ-Fe2O3-maghemite) nanoparticles (IONPs) were encapsulated within the matrix of (bis(p-sulfonatophenyl)phenylphosphine)-methoxypolyethylene glycol-thiol (mPEG) polymer vesicles using a two-step process for active chemotherapeutic cargo loading in cancer theranostics. This formation method gives simple access to highly reactive surface groups present on IONPs together with good control over the vesicle size (50-100 nm). The simultaneous loading of a chemotherapeutic drug cargo (doxorubicin) and its in vitro release in cancer cells was achieved. The feasibility of controlled drug release under different pH conditions was demonstrated in the case of encapsulated doxorubicin molecules, showing the viability of the concept of stimulated drug delivery for magneto-chemotherapy. These polymer-magnetic nanocargoes (PMNCs) exhibit enhanced contrast properties that open potential applications for magnetic resonance imaging. These self-assembled magnetic polymersomes can be used as efficient multifunctional nanocarriers for combined therapy and imaging.


Subject(s)
Drug Delivery Systems , Hyperthermia, Induced , Magnetite Nanoparticles , Neoplasms/diagnosis , Neoplasms/therapy , Animals , Drug Carriers , Ferric Compounds , Humans , Magnetic Resonance Imaging
9.
Water Sci Technol ; 72(4): 608-15, 2015.
Article in English | MEDLINE | ID: mdl-26247760

ABSTRACT

The present publication investigates the performance of nanocrystalline Ni (15 wt.%)-doped α-Fe2O3 as an effective nanomaterial for the removal of Cd(II) ions from aqueous solutions. The nanocrystalline Ni-doped α-Fe2O3 powders were prepared by mechanical alloying, and characterized by X-ray diffraction and a vibrating sample magnetometer. Batch-mode experiments were realized to determine the adsorption equilibrium, kinetics, and thermodynamic parameters of toxic heavy metal ions by Ni (15 wt.%)-doped α-Fe2O3. The adsorption isotherms data were found to be in good agreement with the Langmuir model. The adsorption capacity of Cd(II) ion reached a maximum value of about 90.91 mg g(-1) at 328 K and pH 7. The adsorption process kinetics was found to comply with pseudo-second-order rate law. Thermodynamic parameters related to the adsorption reaction, free energy change, enthalpy change and entropy change, were evaluated. The found values of free energy and enthalpy revealed a spontaneous endothermic adsorption-process. Moreover, the positive entropy suggests an increase of randomness during the process of heavy metal removal at the adsorbent-solution interface.


Subject(s)
Cadmium/chemistry , Ferric Compounds/chemistry , Metal Nanoparticles/chemistry , Nickel/chemistry , Waste Disposal, Fluid/methods , Wastewater/analysis , Hydrogen-Ion Concentration , Models, Theoretical , Nanoparticles/chemistry , Temperature
10.
Opt Express ; 22(10): 11680-9, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24921290

ABSTRACT

We report room-temperature Raman scattering studies of nominally undoped (100) GaAs1−xBix epitaxial layers exhibiting Bi-induced (p-type) longitudinal-optical-plasmon-coupled (LOPC) modes for 0.018 ≤ x ≤ 0.048. Redshifts in the GaAs-like optical modes due to alloying are evaluated and are paralleled by strong damping of the LOPC. The relative integrated Raman intensities of LO(Γ) and LOPC ALO/ALOPC are characteristic of heavily doped p-GaAs, with a remarkable near total screening of the LO(Γ) phonon (ALO/ALOPC → 0) for larger Bi concentrations. A method of spectral analysis is set out which yields estimates of hole concentrations in excess of 5×1017cm−3 and correlates with the Bi molar fraction. These findings are in general agreement with recent electrical transport measurements performed on the alloy, and while the absolute size of the hole concentrations differ, likely origins for the discrepancy are discussed. We conclude that the damped LO-phonon-hole-plasmon coupling phenomena plays a dominant role in Raman scattering from unpassivated nominally undoped GaAsBi.

SELECTION OF CITATIONS
SEARCH DETAIL
...