Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Nat Mater ; 23(3): 363-368, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302742

ABSTRACT

Crystal lattice fluctuations, which are known to influence phase transitions of quantum materials in equilibrium, are also expected to determine the dynamics of light-induced phase changes. However, they have only rarely been explored in these dynamical settings. Here we study the time evolution of lattice fluctuations in the quantum paraelectric SrTiO3, in which mid-infrared drives have been shown to induce a metastable ferroelectric state. Crucial in these physics is the competition between polar instabilities and antiferrodistortive rotations, which in equilibrium frustrate the formation of long-range ferroelectricity. We make use of high-intensity mid-infrared optical pulses to resonantly drive the Ti-O-stretching mode at 17 THz, and we measure the resulting change in lattice fluctuations using time-resolved X-ray diffuse scattering at a free-electron laser. After a prompt increase, we observe a long-lived quench in R-point antiferrodistortive lattice fluctuations. Their enhancement and reduction are theoretically explained by considering the fourth-order nonlinear phononic interactions to the driven optical phonon and third-order coupling to lattice strain, respectively. These observations provide a number of testable hypotheses for the physics of light-induced ferroelectricity.

2.
Foot Ankle Int ; 45(2): 103-114, 2024 02.
Article in English | MEDLINE | ID: mdl-38156640

ABSTRACT

BACKGROUND: Postoperative care protocols for ankle fracture surgery remain controversial with variability among care providers. This prospective controlled trial compared 12-week postoperative outcomes for immediate unprotected weightbearing (IMWB) vs nonweightbearing (NWB) for 2 weeks in a splint followed by weightbearing as tolerated (WBAT) in a boot after surgical fixation of selected low-energy ankle fractures without superior articular involvement. METHODS: Eighty-seven patients undergoing surgical fixation of ankle fractures at a single level 1 trauma center were recruited according to specific criteria and enrolled by presentation date. The first 43 eligible patients were allocated to the control group, with NWB in a splint for 2 weeks followed by WBAT in a walker boot. The next 44 patients recruited were allocated to the IMWB group. The primary outcome was the Olerud-Molander score (OMAS). Secondary outcome measures included the Euroquol-5D (EQ5D) score and Work Productivity and Activity Impairment: Specific Health Problem (WPAI:SHP) scores, ankle range of motion (ROM), wound complications, time to return to work, radiograph measurements, and fracture reduction loss. In this perioperative-focused study, we collected data on patients until 12 weeks postoperation. RESULTS: The IMWB group had 5 superficial wound complications vs 1 in the control group. At 12 weeks, we found no difference in OMAS, EQ5D, WPAI:SHP scores, ROM, time to return to work, or radiographic measurements. CONCLUSION: In this short-term and relatively small prospective trial, we found more wound complications among patients treated with immediate unprotected weightbearing compared with patients treated with 2 weeks of NWB followed by protected weightbearing. Given the low incidence and small sample size, we do not know if these observed findings are generalizable. However, we also found no difference in functional outcomes at 12 weeks postoperation between these 2 groups. In light of that, we do not recommend IMWB after open reduction internal fixation of low-energy ankle fractures with plate and/or screw fixation. LEVEL OF EVIDENCE: Level II, prospective controlled trial.


Subject(s)
Ankle Fractures , Humans , Ankle Fractures/surgery , Ankle Fractures/etiology , Prospective Studies , Fracture Fixation, Internal/methods , Open Fracture Reduction , Weight-Bearing , Treatment Outcome
3.
Nat Commun ; 12(1): 1239, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33623010

ABSTRACT

One of the main challenges in ultrafast material science is to trigger phase transitions with short pulses of light. Here we show how strain waves, launched by electronic and structural precursor phenomena, determine a coherent macroscopic transformation pathway for the semiconducting-to-metal transition in bistable Ti3O5 nanocrystals. Employing femtosecond powder X-ray diffraction, we measure the lattice deformation in the phase transition as a function of time. We monitor the early intra-cell distortion around the light absorbing metal dimer and the long range deformations governed by acoustic waves propagating from the laser-exposed Ti3O5 surface. We developed a simplified elastic model demonstrating that picosecond switching in nanocrystals happens concomitantly with the propagating acoustic wavefront, several decades faster than thermal processes governed by heat diffusion.

4.
Acta Biomater ; 111: 118-128, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32447066

ABSTRACT

The patients with end stage kidney disease need haemodialysis therapies, using an artificial kidney. Nevertheless, the current therapies cannot remove a broad range of uremic toxins compared to the natural kidney. Adsorption therapies, using sorbent-based columns, can improve the clearance of uremic toxins, but the sorbent particles often require polymeric coatings to improve their haemocompatibility leading to mass transfer limitations and to lowering of their performance. Earlier, we have developed a dual layer Mixed Matrix fiber Membrane (MMM) based on polyethersulfone/polyvinylpyrrolidone (PES/PVP) polymer blends. There, the sorbent activated carbon particles are embedded in the outer membrane layer for achieving higher removal whereas the inner blood contacting selective membrane layer should achieve optimal blood compatibility. In this work, we evaluate in detail the haemocompatibility of the MMM following the norm ISO 10993-4. We study two generations of MMM having different dimensions and transport characteristics; one with low flux and no albumin leakage and another with high flux but some albumin leakage. The results are compared to those of home-made PES/PVP single layer hollow fiber and to various control fibers already applied in the clinic. Our results show that the low flux MMM successfully avoids contact of blood with the activated carbon and has good haemocompatibility, comparable to membranes currently used in the clinic. STATEMENT OF SIGNIFICANCE: Haemodialysis is a life-sustaining extracorporeal treatment for renal disease, however a broad range of uremic toxins cannot still be removed. In our previous works we showed that a double layer Mixed Matrix Membrane (MMM) composed of polyethersulfone/polyvinylpyrrolidone and activated carbon can achieve higher removal of uremic toxics compared to commercial haemodialysers. In this work we evaluate the haemocompatibility profile of the MMM in order to facilitate its clinical implementation. The lumen particle-free layer of the MMM successfully avoids the contact of blood with the poorly blood-compatible activated carbon. Moreover, thanks to the high amount of polyvinylpyrrolidone and to the smoothness of the lumen layer, the MMM has very good haemocompatibility, comparable to membranes currently used in the clinic.


Subject(s)
Kidney Failure, Chronic , Membranes, Artificial , Adsorption , Humans , Povidone , Renal Dialysis
5.
Opt Lett ; 44(3): 574-577, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30702682

ABSTRACT

The extension of transient grating spectroscopy to the x-ray regime will create numerous opportunities, ranging from the study of thermal transport in the ballistic regime to charge, spin, and energy transfer processes with atomic spatial and femtosecond temporal resolution. Studies involving complicated split-and-delay lines have not yet been successful in achieving this goal. Here we propose a novel, simple method based on the Talbot effect for converging beams, which can easily be implemented at current x-ray free electron lasers. We validate our proposal by analyzing printed interference patterns on polymethyl methacrylate and gold samples using ∼3 keV X-ray pulses.

6.
Nature ; 565(7738): 209-212, 2019 01.
Article in English | MEDLINE | ID: mdl-30602792

ABSTRACT

The Einstein-de Haas effect was originally observed in a landmark experiment1 demonstrating that the angular momentum associated with aligned electron spins in a ferromagnet can be converted to mechanical angular momentum by reversing the direction of magnetization using an external magnetic field. A related problem concerns the timescale of this angular momentum transfer. Experiments have established that intense photoexcitation in several metallic ferromagnets leads to a drop in magnetization on a timescale shorter than 100 femtoseconds-a phenomenon called ultrafast demagnetization2-4. Although the microscopic mechanism for this process has been hotly debated, the key question of where the angular momentum goes on these femtosecond timescales remains unanswered. Here we use femtosecond time-resolved X-ray diffraction to show that most of the angular momentum lost from the spin system upon laser-induced demagnetization of ferromagnetic iron is transferred to the lattice on sub-picosecond timescales, launching a transverse strain wave that propagates from the surface into the bulk. By fitting a simple model of the X-ray data to simulations and optical data, we estimate that the angular momentum transfer occurs on a timescale of 200 femtoseconds and corresponds to 80 per cent of the angular momentum that is lost from the spin system. Our results show that interaction with the lattice has an essential role in the process of ultrafast demagnetization in this system.

7.
Unfallchirurg ; 121(4): 339-346, 2018 Apr.
Article in German | MEDLINE | ID: mdl-29532092

ABSTRACT

The introduction of requirements for a minimum intake capacity of trauma patients by the German Trauma Society (DGU) into the so-called white book of treatment of seriously injured patients, is helpful for a sufficient preparation for threats and for dealing with mass casualties for trauma centers as well as for the emergency medical services (EMS). In the hospital information database provided by the Federation of German Medical Directors of Emergency Medical Services, more than 1300 hospitals are currently listed. This information supports the allocation of trauma patients from the field to the appropriate trauma center. Currently, without any coordination requirements, the current 626 trauma centers in Germany are able to immediately handle 6260 patients. This number could be doubled by activating the local hospital action plan, where a priority plan is set up. Additionally, the implementation of a nationwide flexible standardized communication structure between the dispatch center of the ambulance service and the hospitals, would improve daily care as well as the management of threats and mass casualties. It is the obligation of the local medical director of the EMS, to maintain and update the hospital database. Providing the information in the database with the hospital resources and the flexible standard communication structure, is appropriate to improve the daily collaboration and the preparation for mass casualties.


Subject(s)
Disaster Planning/statistics & numerical data , Emergency Medical Services/supply & distribution , Health Plan Implementation/statistics & numerical data , Health Resources/supply & distribution , Societies, Medical , Wounds and Injuries/epidemiology , Wounds and Injuries/therapy , Disaster Planning/organization & administration , Germany , Health Plan Implementation/organization & administration , Health Resources/organization & administration , Humans , Mass Casualty Incidents/statistics & numerical data , Physician Executives/statistics & numerical data , Registries/statistics & numerical data
8.
Phys Rev Lett ; 120(10): 105501, 2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29570335

ABSTRACT

Long wavelength vibrational modes in the ferromagnetic semiconductor Ga_{0.91}Mn_{0.09}As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.

9.
Phys Rev Lett ; 118(24): 247601, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28665638

ABSTRACT

We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-to-metal transition in the doped manganite Pr_{0.5}Ca_{0.5}MnO_{3} after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density-functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drives these dynamics, highlighting a new avenue of nonlinear phonon control.

10.
Phys Rev Lett ; 118(2): 027401, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-28128616

ABSTRACT

Selective optical excitation of a substrate lattice can drive phase changes across heterointerfaces. This phenomenon is a nonequilibrium analogue of static strain control in heterostructures and may lead to new applications in optically controlled phase change devices. Here, we make use of time-resolved nonresonant and resonant x-ray diffraction to clarify the underlying physics and to separate different microscopic degrees of freedom in space and time. We measure the dynamics of the lattice and that of the charge disproportionation in NdNiO_{3}, when an insulator-metal transition is driven by coherent lattice distortions in the LaAlO_{3} substrate. We find that charge redistribution propagates at supersonic speeds from the interface into the NdNiO_{3} film, followed by a sonic lattice wave. When combined with measurements of magnetic disordering and of the metal-insulator transition, these results establish a hierarchy of events for ultrafast control at complex-oxide heterointerfaces.

11.
Acta Physiol (Oxf) ; 219(2): 510-520, 2017 02.
Article in English | MEDLINE | ID: mdl-27259463

ABSTRACT

AIM: Protein-bound uraemic toxin accumulation causes uraemia-associated cardiovascular morbidity. Enhancing the plasma ionic strength releases toxins from protein binding and makes them available for removal during dialysis. This concept was implemented through high sodium concentrations ([Na+ ]) in the substituate of pre-dilution haemodiafiltration at increased plasma ionic strength (HDF-IPIS). METHODS: Ex vivo HDF-IPIS with blood tested increasing [Na+ ] to demonstrate efficacy and haemocompatibility. Haemocompatibility was further assessed in sheep using two different HDF-IPIS set-ups and [Na+ ] between 350 and 600 mmol L-1 . Safety and efficacy of para-cresyl sulphate (pCS) and indoxyl sulphate (IS) removal was further investigated in a randomized clinical pilot trial comparing HDF-IPIS to HD and HDF. RESULTS: Compared to [Na+ ] of 150 mmol L-1 , ex vivo HDF-IPIS at 500 mmol L-1 demonstrated up to 50% higher IS removal. Haemolysis in sheep was low even at [Na+ ] of 600 mmol L-1 (free Hb 0.016 ± 0.001 g dL-1 ). In patients, compared to HD, a [Na+ ] of 240 mmol L-1 in HDF-IPIS resulted in 40% greater reduction (48.7 ± 23.6 vs. 67.8 ± 7.9%; P = 0.013) in free IS. Compared to HD and HDF (23.0 ± 14.8 and 25.4 ± 10.5 mL min-1 ), the dialytic clearance of free IS was 31.6 ± 12.8 mL min-1 (P = 0.017) in HDF-IPIS, but [Na+ ] in arterial blood increased from 132 ± 2 to 136 ± 3 mmol L-1 (0 vs. 240 min; P < 0.001). CONCLUSION: HDF-IPIS is technically and clinically feasible. More effective HDF-IPIS requires higher temporary plasma [Na+ ], but dialysate [Na+ ] has to be appropriately adapted to avoid sodium accumulation.


Subject(s)
Hemodiafiltration/methods , Aged , Animals , Female , Humans , Male , Middle Aged , Osmolar Concentration , Sheep , Uremia/prevention & control
12.
Phys Rev Lett ; 117(5): 056401, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27517781

ABSTRACT

Symmetry breaking and the emergence of order is one of the most fascinating phenomena in condensed matter physics. It leads to a plethora of intriguing ground states found in antiferromagnets, Mott insulators, superconductors, and density-wave systems. Exploiting states of matter far from equilibrium can provide even more striking routes to symmetry-lowered, ordered states. Here, we demonstrate for the case of elemental chromium that moderate ultrafast photoexcitation can transiently enhance the charge-density-wave (CDW) amplitude by up to 30% above its equilibrium value, while strong excitations lead to an oscillating, large-amplitude CDW state that persists above the equilibrium transition temperature. Both effects result from dynamic electron-phonon interactions, providing an efficient mechanism to selectively transform a broad excitation of the electronic order into a well-defined, long-lived coherent lattice vibration. This mechanism may be exploited to transiently enhance order parameters in other systems with coupled degrees of freedom.

13.
Nat Mater ; 15(6): 601-5, 2016 06.
Article in English | MEDLINE | ID: mdl-27159018

ABSTRACT

Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity. Recently, photo-excitation has been used to induce similarly exotic states transiently. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr2IrO4. We find that the non-equilibrium state, 2 ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. The marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.


Subject(s)
Iridium/chemistry , Magnetic Fields , Molecular Dynamics Simulation , Strontium/chemistry , Superconductivity
14.
Struct Dyn ; 3(2): 023605, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26798836

ABSTRACT

We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules.

15.
Phys Rev Lett ; 114(25): 255501, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26197134

ABSTRACT

Structural rearrangements within single molecules occur on ultrafast time scales. Many aspects of molecular dynamics, such as the energy flow through excited states, have been studied using spectroscopic techniques, yet the goal to watch molecules evolve their geometrical structure in real time remains challenging. By mapping nuclear motions using femtosecond x-ray pulses, we have created real-space representations of the evolving dynamics during a well-known chemical reaction and show a series of time-sorted structural snapshots produced by ultrafast time-resolved hard x-ray scattering. A computational analysis optimally matches the series of scattering patterns produced by the x rays to a multitude of potential reaction paths. In so doing, we have made a critical step toward the goal of viewing chemical reactions on femtosecond time scales, opening a new direction in studies of ultrafast chemical reactions in the gas phase.

16.
Acta Physiol (Oxf) ; 215(1): 13-23, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25939450

ABSTRACT

AIM: As post-translational modifications of proteins may have an impact on the pathogenesis of diseases such as atherosclerosis, diabetes mellitus and chronic kidney disease (CKD), post-translational modifications are currently gaining increasing interest. In this study, a comprehensive method for analysis of these post-translational modifications is established for the clinical diagnostic routine. METHODS: Here, we analysed albumin - the most abundant plasma protein in human - isolated from patients with CKD and healthy controls by chromatographic steps and identified by MALDI mass spectrometry. Post-translational modifications of albumin were identified after digestion by analysing mass signal shifts of albumin peptides using pertinent mass databases. RESULTS: Albumin isolated from plasma of patients with CKD but not from healthy control subjects was specifically post-translationally modified by guanidinylation of lysines at positions 249, 468, 548, 565 and 588. After identification of guanidinylations as post-translational modifications of albumin isolated from patients with CKD, these modifications were quantified by mass spectrometry demonstrating a significant increase in the corresponding mass signal intensities in patients with CKD compared to healthy controls. The relative amount of guanidinylation of lysine at position 468 in patients with CKD was determined as 63 ± 32% (N = 3). Subsequently, we characterized the pathophysiological impact of the post-translational guanidinylation on the binding capacity of albumin for representative hydrophobic metabolic waste products. In vitro guanidinylation of albumin from healthy control subjects caused a decreased binding capacity of albumin in a time-dependent manner. Binding of indoxyl sulphate (protein-bound fraction) decreased from 82 ± 1% of not post-translationally modified albumin to 56 ± 1% after in vitro guanidinylation (P < 0.01), whereas the binding of tryptophan decreased from 20 to 4%. These results are in accordance with the binding of indoxyl sulphate to albumin from healthy control subjects and patients with CKD (88 ± 3 vs. 74 ± 10, P < 0.01). Thus, in vitro post-translational guanidinylation of albumin had a direct effect on the binding capacity of hydrophobic metabolites such as indoxyl sulphate and tryptophan. CONCLUSION: We used a mass spectrometry-based method for the characterization of post-translational modification and demonstrated the pathophysiological impact of a representative post-translational modification of plasma albumin. The data described in this study may help to elucidate the pathophysiological role of protein modifications.


Subject(s)
Protein Processing, Post-Translational/physiology , Renal Insufficiency, Chronic/blood , Serum Albumin/metabolism , Adult , Aged , Aged, 80 and over , Female , Guanidine/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Lysine/metabolism , Male , Mass Spectrometry/methods , Middle Aged , Molecular Weight , Peptides/metabolism
17.
J Synchrotron Radiat ; 22(3): 626-33, 2015 May.
Article in English | MEDLINE | ID: mdl-25931078

ABSTRACT

Multiplexing of the Linac Coherent Light Source beam was demonstrated for hard X-rays by spectral division using a near-perfect diamond thin-crystal monochromator operating in the Bragg geometry. The wavefront and coherence properties of both the reflected and transmitted beams were well preserved, thus allowing simultaneous measurements at two separate instruments. In this report, the structure determination of a prototypical protein was performed using serial femtosecond crystallography simultaneously with a femtosecond time-resolved XANES studies of photoexcited spin transition dynamics in an iron spin-crossover system. The results of both experiments using the multiplexed beams are similar to those obtained separately, using a dedicated beam, with no significant differences in quality.

18.
Eur J Appl Physiol ; 115(7): 1547-57, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25725816

ABSTRACT

INTRODUCTION: Impaired endothelial function has been observed during and immediately following an acutely painful stimulus. However, the extent to which this persists following pain dissipation is unclear. PURPOSE: To determine whether painful ischemic handgrip exercise (pain task) causes impaired flow-mediated dilation (FMD) after the sensation of pain and hemodynamic responses have abated. A second purpose was to determine whether the response to pain differed with a predisposition to magnify, ruminate, and feel helpless about pain (pain catastrophizing status). METHODS: Brachial artery FMD stimulated by reactive hyperemia was assessed via ultrasound in 18 (9 high catastrophizing) healthy, women (20 ± 1 years) before and 15 min after a 3 min pain task. The shear stress stimulus for FMD was estimated as shear rate (blood velocity/brachial artery diameter). RESULTS (MEAN ± SD): None of the variables were significantly impacted by pain catastrophizing status and are presented pooled across group. The pain task increased pain ratings [1 ± 1-6 ± 3 (0-10 scale) (p < 0.001)], mean arterial pressure (MAP) (p < 0.001) and heart rate (HR) (p < 0.001), all returning to pre-pain levels ≤2-min post-pain task (pre-pain vs. 2-min post-pain: pain rating p = 1.000; MAP p = 0.142; HR p = 0.992). The shear rate stimulus was not different between pre- and post-pain task FMD tests (p = 0.200). FMD decreased post-pain task (10.8 ± 4.6 vs. 7.0 ± 2.7 %, p < 0.001). CONCLUSION: These results indicate that, regardless of pain catastrophizing status, painful ischemic handgrip exercise has a deleterious impact on endothelial function that persists after the pain sensation and hemodynamic responses have abated.


Subject(s)
Brachial Artery/physiology , Endothelium, Vascular/physiology , Hand Strength/physiology , Heart Rate/physiology , Hyperemia/physiopathology , Pain/physiopathology , Stress, Mechanical , Exercise/physiology , Female , Humans , Regional Blood Flow/physiology , Vasodilation/physiology , Young Adult
19.
Struct Dyn ; 2(4): 041713, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26798812

ABSTRACT

We report time-resolved X-ray absorption measurements after photolysis of carbonmonoxy myoglobin performed at the LCLS X-ray free electron laser with nearly 100 fs (FWHM) time resolution. Data at the Fe K-edge reveal that the photoinduced structural changes at the heme occur in two steps, with a faster (∼70 fs) relaxation preceding a slower (∼400 fs) one. We tentatively attribute the first relaxation to a structural rearrangement induced by photolysis involving essentially only the heme chromophore and the second relaxation to a residual Fe motion out of the heme plane that is coupled to the displacement of myoglobin F-helix.

20.
Struct Dyn ; 2(5): 054302, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26798825

ABSTRACT

We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.

SELECTION OF CITATIONS
SEARCH DETAIL
...