Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Ecol ; 17(1): 38, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29233135

ABSTRACT

BACKGROUND: The importance of intraspecific trait variation (ITV) is increasingly acknowledged among plant ecologists. However, our understanding of what drives ITV between individual plants (ITVBI) at the population level is still limited. Contrasting theoretical hypotheses state that ITVBI can be either suppressed (stress-reduced plasticity hypothesis) or enhanced (stress-induced variability hypothesis) under high abiotic stress. Similarly, other hypotheses predict either suppressed (niche packing hypothesis) or enhanced ITVBI (individual variation hypothesis) under high niche packing in species rich communities. In this study we assess the relative effects of both abiotic and biotic niche effects on ITVBI of four functional traits (leaf area, specific leaf area, plant height and seed mass), for three herbaceous plant species across a 2300 km long gradient in Europe. The study species were the slow colonizing Anemone nemorosa, a species with intermediate colonization rates, Milium effusum, and the fast colonizing, non-native Impatiens glandulifera. RESULTS: Climatic stress consistently increased ITVBI across species and traits. Soil nutrient stress, on the other hand, reduced ITVBI for A. nemorosa and I. glandulifera, but had a reversed effect for M. effusum. We furthermore observed a reversed effect of high niche packing on ITVBI for the fast colonizing non-native I. glandulifera (increased ITVBI), as compared to the slow colonizing native A. nemorosa and M. effusum (reduced ITVBI). Additionally, ITVBI in the fast colonizing species tended to be highest for the vegetative traits plant height and leaf area, but lowest for the measured generative trait seed mass. CONCLUSIONS: This study shows that stress can both reduce and increase ITVBI, seemingly supporting both the stress-reduced plasticity and stress-induced variability hypotheses. Similarly, niche packing effects on ITVBI supported both the niche packing hypothesis and the individual variation hypothesis. These results clearly illustrates the importance of simultaneously evaluating both abiotic and biotic factors on ITVBI. This study adds to the growing realization that within-population trait variation should not be ignored and can provide valuable ecological insights.


Subject(s)
Anemone/physiology , Impatiens/physiology , Phenotype , Plant Dispersal , Poaceae/physiology , Anemone/genetics , Anemone/growth & development , Environment , Europe , Impatiens/genetics , Impatiens/growth & development , Introduced Species , Poaceae/genetics , Poaceae/growth & development
2.
BMC Genet ; 16: 103, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26289555

ABSTRACT

BACKGROUND: Invasive species can be a major threat to native biodiversity and the number of invasive plant species is increasing across the globe. Population genetic studies of invasive species can provide key insights into their invasion history and ensuing evolution, but also for their control. Here we genetically characterise populations of Impatiens glandulifera, an invasive plant in Europe that can have a major impact on native plant communities. We compared populations from the species' native range in Kashmir, India, to those in its invaded range, along a latitudinal gradient in Europe. For comparison, the results from 39 other studies of genetic diversity in invasive species were collated. RESULTS: Our results suggest that I. glandulifera was established in the wild in Europe at least twice, from an area outside of our Kashmir study area. Our results further revealed that the genetic diversity in invasive populations of I. glandulifera is unusually low compared to native populations, in particular when compared to other invasive species. Genetic drift rather than mutation seems to have played a role in differentiating populations in Europe. We find evidence of limitations to local gene flow after introduction to Europe, but somewhat less restrictions in the native range. I. glandulifera populations with significant inbreeding were only found in the species' native range and invasive species in general showed no increase in inbreeding upon leaving their native ranges. In Europe we detect cases of migration between distantly located populations. Human activities therefore seem to, at least partially, have facilitated not only introductions, but also further spread of I. glandulifera across Europe. CONCLUSIONS: Although multiple introductions will facilitate the retention of genetic diversity in invasive ranges, widespread invasive species can remain genetically relatively invariant also after multiple introductions. Phenotypic plasticity may therefore be an important component of the successful spread of Impatiens glandulifera across Europe.


Subject(s)
Genetic Variation , Impatiens/genetics , Introduced Species , Alleles , Europe , Genetic Markers , Genetics, Population , Genotype , Geography , Models, Statistical , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL