Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Protein Expr Purif ; 106: 72-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25448595

ABSTRACT

The lack of efficient refolding methodologies must be overcome to take full advantage of the fact that bacteria express high levels of aggregated recombinant proteins. High hydrostatic pressure (HHP) impairs intermolecular hydrophobic and electrostatic interactions, dissociating aggregates, which makes HHP a useful tool to solubilize proteins for subsequent refolding. A process of refolding was set up by using as a model TsnC, a thioredoxin that catalyzes the disulfide reduction to a dithiol, a useful indication of biological activity. The inclusion bodies (IB) were dissociated at 2.4 kbar. The effect of incubation of IB suspensions at 1-800 bar, the guanidine hydrochloride concentration, the oxidized/reduced glutathione (GSH/GSSG) ratios, and the additives in the refolding buffer were analyzed. To assess the yields of fully biologically active protein obtained for each tested condition, it was crucial to analyze both the TsnC solubilization yield and its enzymatic activity. Application of 2.4 kbar to the IB suspension in the presence of 9 mM GSH, 1mM GSSG, 0.75 M guanidine hydrochloride, and 0.5M arginine with subsequent incubation at 1 bar furnished high refolding yield (81%). The experience gained in this study shall help to establish efficient HHP-based protein refolding processes for other proteins.


Subject(s)
Bacterial Proteins/metabolism , Biochemistry/methods , Hydrostatic Pressure , Protein Refolding , Thioredoxins/metabolism , Xylella/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Circular Dichroism , Disulfides/metabolism , Escherichia coli/metabolism , Glutathione Disulfide/metabolism , Guanidine/pharmacology , Protein Refolding/drug effects , Protein Structure, Secondary , Solubility , Thioredoxins/chemistry , Thioredoxins/ultrastructure
2.
Mol Biotechnol ; 48(3): 228-34, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21181456

ABSTRACT

Aggregation is a serious obstacle for recovery of biologically active heterologous proteins from inclusion bodies (IBs) produced by recombinant bacteria. E. coli transformed with a vector containing the cDNA for Bothropstoxin-1 (BthTx-1) expressed the recombinant product as IBs. In order to obtain the native toxin, insoluble and aggregated protein was refolded using high hydrostatic pressure (HHP). IBs were dissolved and refolded (2 kbar, 16 h), and the effects of protein concentration, as well as changes in ratio and concentration of oxido-shuffling reagents, guanidine hydrochloride (GdnHCl), and pH in the refolding buffer, were assayed. A 32% yield (7.6 mg per liter of bacterial culture) in refolding of the native BthTx-1 was obtained using optimal conditions of the refolding buffer (Tris-HCl buffer, pH 7.5, containing 3 mM of a 2:3 ratio of GSH/GSSG, and 1 M GdnHCl). Scanning electron microscopy (SEM) showed that that disaggregation of part of IBs particles occurred upon compression and that the morphology of the remaining IBs, spherical particles, was not substantially altered. Dose-dependent cytotoxic activity of high-pressure refolded BthTx-1 was shown in C2C12 muscle cells.


Subject(s)
Bothrops/metabolism , Crotalid Venoms/chemistry , Disulfides/metabolism , Recombinant Proteins/chemistry , Animals , Cell Death/drug effects , Cell Line , Crotalid Venoms/metabolism , Crotalid Venoms/pharmacology , Disulfides/chemistry , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Glutathione , Guanidine , Hydrogen-Ion Concentration , Hydrostatic Pressure , Inclusion Bodies/chemistry , Mice , Microscopy, Electron, Scanning , Protein Refolding , Protein Stability , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL