Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 18(6): 3364-3376, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35611406

ABSTRACT

During molecular dissociation in the presence of an external uniform magnetic field, electrons flip their spin antiparallel to the magnetic field because of the stabilizing influence of the spin Zeeman operator. Although generalized Hartree-Fock descriptions furnish the optimal mean-field energetic description of such bond-breaking processes, they are allowed to break Sz symmetry, leading to intricate and unexpected spin phases and phase transitions. In this work, we show that the behavior of these molecular spin phases can be interpreted in terms of spin phase diagrams constructed by constraining states to target expectation values of projected spin. The underlying constrained states offer a complete electronic characterization of the spin phases and spin phase transitions, as they can be analyzed using standard quantum chemical tools. Because the constrained states effectively span the entire phase space, they could provide an excellent starting point for post-Hartree-Fock methods aimed at gaining more electron correlation or regaining spin symmetry.

2.
J Comput Chem ; 43(7): 457-464, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34997762

ABSTRACT

Clar's aromatic π -sextet rule is a widely used qualitative method for assessing the electronic structure of polycyclic benzenoid hydrocarbons. Unfortunately, many of the quantum chemical concordances for this rule have a limited range of applicability. Here, we show that the fundamental probabilities associated with a distribution of electrons over domain partitions support Clar's rule in both mean-field and static correlation regimes. In particular, domain partitions that maximize those probabilities reflect the dominance of Clar structures in the electronic structure of these molecules. These findings suggest that extending methods that aim to maximize probabilities by deforming domain partitions could lead to novel quantum chemical underpinnings for many chemical concepts.

3.
J Chem Theory Comput ; 17(11): 6808-6818, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34597030

ABSTRACT

The failure of many density functional approximations can be traced to their behavior under fractional (spin)population redistributions in the asymptotic limit toward infinite bonding distances, which should obey the flat-plane conditions. However, such errors can only be characterized sufficiently in terms of those redistributions if exact energies are available for many possible (spin)population redistributions at different bonding distances. In this study, we propose to model such redistributions by imposing (spin)populations on atomic domains by constraining full configuration interaction wave functions. The resulting N-representable descriptions of small hydrogen chains at different bonding distances allow us to computationally illustrate the effects of the flat-plane conditions in the limit to infinite bond distances, leading to more chemical insight into those flat-plane conditions. As the proposed methodology is able to capture the effects of the flat plane conditions, it could be used to generate the reference data that is required to measure the extent to which approximate methods violate the requirements of the exact functional, leading to a quantification of the delocalization and static correlation error of such methods.

4.
J Chem Phys ; 155(8): 084802, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34470369

ABSTRACT

The Ghent Quantum Chemistry Package (GQCP) is an open-source electronic structure software package that aims to provide an intuitive and expressive software framework for electronic structure software development. Its high-level interfaces (accessible through C++ and Python) have been specifically designed to correspond to theoretical concepts, while retaining access to lower-level intermediates and allowing structural run-time modifications of quantum chemical solvers. GQCP focuses on providing quantum chemical method developers with the computational "building blocks" that allow them to flexibly develop proof of principle implementations for new methods and applications up to the level of two-component spinor bases.

5.
Phys Rev E ; 100(5-1): 053316, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31869920

ABSTRACT

Microstructure strongly influences flow and transport properties of porous media. Flow and transport simulations within porous media, therefore, requires accurate three-dimensional (3D) models of the pore and solid phase structure. To date, no imaging method can resolve all relevant heterogeneities from the nano- to the centimeter scale within complex heterogeneous materials such as clay, reservoir rocks (e.g., travertine, chalk, ...), hardened cement paste, and concrete. To reconstruct these porous materials it is thus necessary to merge information from different 2D and potentially 3D imaging methods. One porous media reconstruction methodology that has been around for at least two decades is simulated annealing (SA). However, realizations with SA typically suffer an artificially reduced long-range connectivity, while multiphase reconstructions are not feasible in most cases because of a prohibitive computational burden. To solve these problems we propose a hierarchical multiresolution and multiphase simulated annealing algorithm. To decrease the computational cost of multiphase simulation, our algorithm sequentially simulates one phase after another, in a hierarchical way, which enables handling multimodal distributions and topological relations. Building upon recent work, our algorithm improves long-range connectivity and CPU efficiency by simulating larger particles using a coarser resolution that is subsequently refined compared to standard SA; our proposed extension not only offers the possibility to perform multiphase reconstruction but also allows us (i) to improve binary reconstruction quality, as quantified, e.g., by multiple-point histograms by up to one order of magnitude and (ii) to achieve an overall speed-up. The proposed algorithm is also shown to outperform the direct sampling multiple-point statistics method for the generation of cement paste microstructure with respect to both generation time and quality.

SELECTION OF CITATIONS
SEARCH DETAIL
...