Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; : e0015524, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832790

ABSTRACT

Marburg virus infection in humans is associated with case fatality rates that can reach up to 90%, but to date, there are no approved vaccines or monoclonal antibody (mAb) countermeasures. Here, we immunized Rhesus macaques with multivalent combinations of filovirus glycoprotein (GP) antigens belonging to Marburg, Sudan, and Ebola viruses to generate monospecific and cross-reactive antibody responses against them. From the animal that developed the highest titers of Marburg virus GP-specific neutralizing antibodies, we sorted single memory B cells using a heterologous Ravn virus GP probe and cloned and characterized a panel of 34 mAbs belonging to 28 unique lineages. Antibody specificities were assessed by overlapping pepscan and binding competition analyses, revealing that roughly a third of the lineages mapped to the conserved receptor binding region, including potent neutralizing lineages that were confirmed by negative stain electron microscopy to target this region. Additional lineages targeted a protective region on GP2, while others were found to possess cross-filovirus reactivity. Our study advances the understanding of orthomarburgvirus glycoprotein antigenicity and furthers efforts to develop candidate antibody countermeasures against these lethal viruses. IMPORTANCE: Marburg viruses were the first filoviruses characterized to emerge in humans in 1967 and cause severe hemorrhagic fever with average case fatality rates of ~50%. Although mAb countermeasures have been approved for clinical use against the related Ebola viruses, there are currently no approved countermeasures against Marburg viruses. We successfully isolated a panel of orthomarburgvirus GP-specific mAbs from a macaque immunized with a multivalent combination of filovirus antigens. Our analyses revealed that roughly half of the antibodies in the panel mapped to regions on the glycoprotein shown to protect from infection, including the host cell receptor binding domain and a protective region on the membrane-anchoring subunit. Other antibodies in the panel exhibited broad filovirus GP recognition. Our study describes the discovery of a diverse panel of cross-reactive macaque antibodies targeting orthomarburgvirus and other filovirus GPs and provides candidate immunotherapeutics for further study and development.

2.
Appl Opt ; 62(8): 1871-1885, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-37133069

ABSTRACT

The low-latency adaptive optical mirror system (LLAMAS) is designed to push the limits on achievable latencies and frame rates. It has 21 subapertures across its pupil. A reformulated version of the linear quadratic Gaussian (LQG) method predictive Fourier control is implemented in LLAMAS; for all modes, it takes just 30 µs to compute. In the testbed, a turbulator mixes hot and ambient air to produce wind-blown turbulence. Wind prediction clearly improves correction when compared to an integral controller. Closed-loop telemetry shows that wind-predictive LQG removes the characteristic "butterfly" and reduces temporal error power by up to a factor of three for mid-spatial frequency modes. Strehl changes seen in focal plane images are consistent with telemetry and the system error budget.

3.
Int J Mol Sci ; 23(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35328445

ABSTRACT

Semaphorin 4A (Sema4A) exerts a stabilizing effect on human Treg cells in PBMC and CD4+ T cell cultures by engaging Plexin B1. Sema4A deficient mice display enhanced allergic airway inflammation accompanied by fewer Treg cells, while Sema4D deficient mice displayed reduced inflammation and increased Treg cell numbers even though both Sema4 subfamily members engage Plexin B1. The main objectives of this study were: 1. To compare the in vitro effects of Sema4A and Sema4D proteins on human Treg cells; and 2. To identify function-determining residues in Sema4A critical for binding to Plexin B1 based on Sema4D homology modeling. We report here that Sema4A and Sema4D display opposite effects on human Treg cells in in vitro PBMC cultures; Sema4D inhibited the CD4+CD25+Foxp3+ cell numbers and CD25/Foxp3 expression. Sema4A and Sema4D competitively bind to Plexin B1 in vitro and hence may be doing so in vivo as well. Bayesian Partitioning with Pattern Selection (BPPS) partitioned 4505 Sema domains from diverse organisms into subgroups based on distinguishing sequence patterns that are likely responsible for functional differences. BPPS groups Sema3 and Sema4 into one family and further separates Sema4A and Sema4D into distinct subfamilies. Residues distinctive of the Sema3,4 family and of Sema4A (and by homology of Sema4D) tend to cluster around the Plexin B1 binding site. This suggests that the residues both common to and distinctive of Sema4A and Sema4D may mediate binding to Plexin B1, with subfamily residues mediating functional specificity. We mutated the Sema4A-specific residues M198 and F223 to alanine; notably, F223 in Sema4A corresponds to alanine in Sema4D. Mutant proteins were assayed for Plexin B1-binding and Treg stimulation activities. The F223A mutant was unable to stimulate Treg stability in in vitro PBMC cultures despite binding Plexin B1 with an affinity similar to the WT protein. This research is a first step in generating potent mutant Sema4A molecules with stimulatory function for Treg cells with a view to designing immunotherapeutics for asthma.


Subject(s)
Leukocytes, Mononuclear , Semaphorins/metabolism , Alanine , Animals , Bayes Theorem , Forkhead Transcription Factors/genetics , Humans , Inflammation , Leukocytes, Mononuclear/metabolism , Mice , Nerve Tissue Proteins/metabolism
4.
Hepatology ; 71(2): 477-494, 2020 02.
Article in English | MEDLINE | ID: mdl-31529720

ABSTRACT

BACKGROUND AND AIMS: The recruitment and activation of inflammatory cells in the liver delineates the transition from hepatic steatosis to steatohepatitis (SH). APPROACH AND RESULTS: We found that in SH, γδT cells are recruited to the liver by C-C chemokine receptor (CCR) 2, CCR5, and nucleotide-binding oligomerization domain-containing protein 2 signaling and are skewed toward an interleukin (IL)-17A+ phenotype in an inducible costimulator (ICOS)/ICOS ligand-dependent manner. γδT cells exhibit a distinct Vγ4+ , PD1+ , Ly6C+ CD44+ phenotype in SH. Moreover, γδT cells up-regulate both CD1d, which is necessary for lipid-based antigens presentation, and the free fatty acid receptor, CD36. γδT cells are stimulated to express IL-17A by palmitic acid and CD1d ligation. Deletion, depletion, and targeted interruption of γδT cell recruitment protects against diet-induced SH and accelerates disease resolution. CONCLUSIONS: We demonstrate that hepatic γδT cells exacerbate SH, independent of IL-17 expression, by mitigating conventional CD4+ T-cell expansion and modulating their inflammatory program by CD1d-dependent vascular endothelial growth factor expression.


Subject(s)
Adaptive Immunity/physiology , Fatty Liver/etiology , Immunity, Innate/physiology , Intraepithelial Lymphocytes/physiology , Animals , Female , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...