Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 8(13): 8481-90, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-26990247

ABSTRACT

A series of phenothiazine-fulleropyrrolidine (PTZ-C60) dyads having fullerene either at the C-3 aromatic ring position or at the N-position of phenothiazine macrocycle were newly synthesized and characterized. Photoinduced electron transfer leading to PTZ(•+)-C60(•-) charge-separated species was established from studies involving femtosecond transient absorption spectroscopy. Because of the close proximity of the donor and acceptor entities, the C-3 ring substituted PTZ-C60 dyads revealed faster charge separation and charge recombination processes than that observed in the dyad functionalized through the N-position. Next, inverted organic bulk heterojunction (BHJ) solar cells were constructed using the dyads in place of traditionally used [6,6]-phenyl-C61- butyric acid methyl ester (PCBM) and an additional electron donor material poly(3-hexylthiophene) (P3HT). The performance of the C-3 ring substituted PTZ-C60 dyad having a polyethylene glycol substituent produced a power conversion efficiency of 3.5% under inverted bulk heterojunction (BHJ) configuration. This was attributed to optimal BHJ morphology between the polymer and the dyad, which was further promoted by the efficient intramolecular charge separation and relatively slow charge recombination promoted by the dyad within the BHJ structure. The present finding demonstrate PTZ-C60 dyads as being good prospective materials for building organic photovoltaic devices.

2.
J Org Chem ; 81(4): 1535-46, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26771655

ABSTRACT

The benzothiadiazole moiety has been extensively exploited as a building block in the syntheses of efficient organic semiconducting materials during the past decade. In this paper, parallel synthetic routes to benzothiadiazole derivatives, inspired by previous computational findings, are reported. The results presented here show that various C-C cross-couplings of benzothiadiazole, thiophene, and thiazole derivatives can be efficiently performed by applying Xantphos as a ligand of the catalyst system. Moreover, improved and convenient methods to synthesize important chemical building blocks, e.g., 4,7-dibromo-2,1,3-benzothiadiazole, in good to quantitative yields are presented. Additionally, the feasibility of Suzuki-Miyaura and direct coupling methods are compared in the synthesis of target benzothiadiazole derivatives. The computational characterization of the prepared benzothiadiazole derivatives shows that these compounds have planar molecular backbones and the possibility of intramolecular charge transfer upon excitation. The experimental electrochemical and spectroscopic studies reveal that although the compounds have similar electronic and optical properties in solution, they behave differently in solid state due to the different alkyl side-group substitutions in the molecular backbone. These benzothiadiazole derivatives can be potentially used as building blocks in the construction of more advanced small molecule organic semiconductors with acceptor-donor-acceptor motifs.

SELECTION OF CITATIONS
SEARCH DETAIL
...