Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 56(21): 8432-54, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24180745

ABSTRACT

Three unreported analogues of 4-[1-(3,5,5,8,8-pentamethyl-5-6-7-8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (1), otherwise known as bexarotene, as well as four novel analogues of (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid (CD3254), are described and evaluated for their retinoid X receptor (RXR) selective agonism. Compound 1 has FDA approval as a treatment for cutaneous T-cell lymphoma (CTCL), although treatment with 1 can elicit side-effects by disrupting other RXR-heterodimer receptor pathways. Of the seven modeled novel compounds, all analogues stimulate RXR-regulated transcription in mammalian 2 hybrid and RXRE-mediated assays, possess comparable or elevated biological activity based on EC50 profiles, and retain similar or improved apoptotic activity in CTCL assays compared to 1. All novel compounds demonstrate selectivity for RXR and minimal crossover onto the retinoic acid receptor (RAR) compared to all-trans-retinoic acid, with select analogues also reducing inhibition of other RXR-dependent pathways (e.g., VDR-RXR). Our results demonstrate that further improvements in biological potency and selectivity of bexarotene can be achieved through rational drug design.


Subject(s)
Coumaric Acids/pharmacology , Retinoid X Receptors/agonists , Tetrahydronaphthalenes/pharmacology , Coumaric Acids/chemical synthesis , Coumaric Acids/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Tetrahydronaphthalenes/chemical synthesis , Tetrahydronaphthalenes/chemistry
2.
ChemMedChem ; 7(9): 1551-66, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22927238

ABSTRACT

The synthesis of halogenated analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (1), known commonly as bexarotene, and their evaluation for retinoid X receptor (RXR)-specific agonist performance is described. Compound 1 is FDA approved to treat cutaneous T-cell lymphoma (CTCL); however, bexarotene treatment can induce hypothyroidism and elevated triglyceride levels, presumably by disrupting RXR heterodimer pathways for other nuclear receptors. The novel halogenated analogues in this study were modeled and assessed for their ability to bind to RXR and stimulate RXR homodimerization in an RXRE-mediated transcriptional assay as well as an RXR mammalian-2-hybrid assay. In an array of eight novel compounds, four analogues were discovered to promote RXR-mediated transcription with EC(50) values similar to that of 1 and are selective RXR agonists. Our approach also uncovered a periodic trend of increased binding and homodimerization of RXR when substituting a halogen atom for a proton ortho to the carboxylic acid on 1.


Subject(s)
Anticarcinogenic Agents/chemistry , Anticarcinogenic Agents/pharmacology , Retinoid X Receptors/agonists , Tetrahydronaphthalenes/chemistry , Tetrahydronaphthalenes/pharmacology , Animals , Apoptosis/drug effects , Bexarotene , Cell Line, Tumor , Halogenation , Humans , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/metabolism , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Multimerization/drug effects , Retinoid X Receptors/chemistry , Retinoid X Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...