Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 10(5): e0056522, 2022 10 26.
Article in English | MEDLINE | ID: mdl-35993730

ABSTRACT

The epidemiology of antimicrobial resistance (AMR) is complex, with multiple interfaces (human-animal-environment). In this context, One Health surveillance is essential for understanding the distribution of microorganisms and antimicrobial resistance genes (ARGs). This report describes a multicentric study undertaken to evaluate the bacterial communities and resistomes of food-producing animals (cattle, poultry, and swine) and healthy humans sampled simultaneously from five Brazilian regions. Metagenomic analysis showed that a total of 21,029 unique species were identified in 107 rectal swabs collected from distinct hosts, the highest numbers of which belonged to the domain Bacteria, mainly Ruminiclostridium spp. and Bacteroides spp., and the order Enterobacterales. We detected 405 ARGs for 12 distinct antimicrobial classes. Genes encoding antibiotic-modifying enzymes were the most frequent, followed by genes related to target alteration and efflux systems. Interestingly, carbapenemase-encoding genes such as blaAIM-1, blaCAM-1, blaGIM-2, and blaHMB-1 were identified in distinct hosts. Our results revealed that, in general, the bacterial communities from humans were present in isolated clusters, except for the Northeastern region, where an overlap of the bacterial species from humans and food-producing animals was observed. Additionally, a large resistome was observed among all analyzed hosts, with emphasis on the presence of carbapenemase-encoding genes not previously reported in Latin America. IMPORTANCE Humans and food production animals have been reported to be important reservoirs of antimicrobial resistance (AMR) genes (ARGs). The frequency of these multidrug-resistant (MDR) bacteria tends to be higher in low- and middle-income countries (LMICs), due mainly to a lack of public health policies. Although studies on AMR in humans or animals have been carried out in Brazil, this is the first multicenter study that simultaneously collected rectal swabs from humans and food-producing animals for metagenomics. Our results indicate high microbial diversity among all analyzed hosts, and several ARGs for different antimicrobial classes were also found. As far as we know, we have detected for the first time ARGs encoding carbapenemases, such as blaAIM-1, blaCAM-1, blaGIM-2, and blaHMB-1, in Latin America. Thus, our results support the importance of metagenomics as a tool to track the colonization of food-producing animals and humans by antimicrobial-resistant bacteria. In addition, a network surveillance system called GUARANI, created for this study, is ready to be expanded and to collect additional data.


Subject(s)
Anti-Infective Agents , Drug Resistance, Bacterial , Humans , Swine , Cattle , Animals , Drug Resistance, Bacterial/genetics , Brazil , Metagenomics/methods , Bacteria , Anti-Bacterial Agents/pharmacology , Poultry , Genes, Bacterial
2.
Sci Data ; 9(1): 366, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35752638

ABSTRACT

The One Health concept is a global strategy to study the relationship between human and animal health and the transfer of pathogenic and non-pathogenic species between these systems. However, to the best of our knowledge, no data based on One Health genome-centric metagenomics are available in public repositories. Here, we present a dataset based on a pilot-study of 2,915 metagenome-assembled genomes (MAGs) of 107 samples from the human (N = 34), cattle (N = 28), swine (N = 15) and poultry (N = 30) gut microbiomes. Samples were collected from the five Brazilian geographical regions. Of the draft genomes, 1,273 were high-quality drafts (≥90% of completeness and ≤5% of contamination), and 1,642 were medium-quality drafts (≥50% of completeness and ≤10% of contamination). Taxonomic predictions were based on the alignment and concatenation of single-marker genes, and the most representative phyla were Bacteroidota, Firmicutes, and Proteobacteria. Many of these species represent potential pathogens that have already been described or potential new families, genera, and species with potential biotechnological applications. Analyses of this dataset will highlight discoveries about the ecology and functional role of pathogens and uncultivated Archaea and Bacteria from food-producing animals and humans. Furthermore, it also represents an opportunity to describe new species from underrepresented taxonomic groups.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Animals , Archaea/genetics , Bacteria/genetics , Cattle , Humans , Metagenomics , Swine
3.
Microbiol Resour Announc ; 11(7): e0024622, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35758687

ABSTRACT

We report the draft metagenome-assembled genomes (MAGs) of five putatively novel Saccharibacteria strains retrieved from the oral microbiome. MAGs were obtained from nonstimulated saliva samples from hosts with various clinical statuses and correspond to distinct species taxonomically placed within the Saccharimonadaceae family, as determined by genome-wide analysis against previously described TM7 genomes.

4.
Exp Parasitol ; 231: 108175, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34740587

ABSTRACT

We evaluated Haemonchus contortus (HC) and Trichostrongylus colubriformis (TC) infection on the ruminal microbial community of Santa Ines lambs to better understand the pathophysiology of parasite infections and the interactions among gastrointestinal nematodes and gut resident microbiota. In this study, 18 six months of age lambs were maintained for 34 days in individual pens divided into three treatments that included animals infected with HC and TC, and control (infection-free). Haematological, ruminal parameter and microbial nitrogen absorbed by pune derivatives, as well as enteric methane emission (CH4), were analysed, and the rumen microbial taxonomic and functional profile assessed by shotgun metagenomics. The analysis showed that total protein, albumin, urea, and butyrate level were lower in animals infected by both parasites, while HC infection also decreased the haemoglobin level. Both infected groups (TC and HC) increased the enteric methane emission (CH4). TC and HC infections increased the diversity and richness of functional microbial genes. Most alterations in the rumen microbiome composition of infected groups are associated with the suppression of microbes involved in microbial homeostasis maintenance and expansion of the archaeal community in the infected animals. Infection led to an increased abundance of nitrogen, amino acid, protein, and energy metabolism genes. Overall, TC and HC infection increased the enteric methane emission, negatively affected taxon's responsible for maintenance de rumen homeostasis and modulated some important genes related to protein and energy metabolism.


Subject(s)
Gastrointestinal Microbiome , Haemonchiasis/veterinary , Rumen/microbiology , Sheep Diseases/microbiology , Sheep Diseases/parasitology , Trichostrongyloidiasis/veterinary , Animals , Chromatography, Gas/methods , Chromatography, Gas/veterinary , DNA/chemistry , DNA/isolation & purification , Flame Ionization/veterinary , Haemonchiasis/complications , Haemonchiasis/microbiology , Metagenomics , Methane/analysis , Methane/metabolism , Purines/urine , Real-Time Polymerase Chain Reaction/veterinary , Sequence Analysis, DNA/veterinary , Sheep , Trichostrongyloidiasis/complications , Trichostrongyloidiasis/microbiology
5.
BMC Microbiol ; 21(1): 294, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711170

ABSTRACT

BACKGROUND: The Rhizobiales (Proteobacteria) order is an abundant and diverse group of microorganisms, being extensively studied for its lifestyle based on the association with plants, animals, and humans. New studies have demonstrated that the last common ancestor (LCA) of Rhizobiales had a free-living lifestyle, but the phylogenetic and metabolism characterization of basal lineages remains unclear. Here, we used a high-resolution phylogenomic approach to test the monophyly of the Aestuariivirgaceae family, a new taxonomic group of Rhizobiales. Furthermore, a deep metabolic investigation provided an overview of the main functional traits that can be associated with its lifestyle. We hypothesized that the presence of pathways (e.g., Glycolysis/Gluconeogenesis) and the absence of pathogenic genes would be associated with a free-living lifestyle in Aestuariivirgaceae. RESULTS: Using high-resolution phylogenomics approaches, our results revealed a clear separation of Aestuariivirgaceae into a distinct clade of other Rhizobiales family, suggesting a basal split early group and corroborate the monophyly of this group. A deep functional annotation indicated a metabolic versatility, which includes putative genes related to sugar degradation and aerobic respiration. Furthermore, many of these traits could reflect a basal metabolism and adaptations of Rhizobiales, as such the presence of Glycolysis/Gluconeogenesis pathway and the absence of pathogenicity genes, suggesting a free-living lifestyle in the Aestuariivirgaceae members. CONCLUSIONS: Aestuariivirgaceae (Rhizobiales) family is a monophyletic taxon of the Rhizobiales with a free-living lifestyle and a versatile metabolism that allows these microorganisms to survive in the most diverse microbiomes, demonstrating their adaptability to living in systems with different conditions, such as extremely cold environments to tropical rivers.


Subject(s)
Metagenome/genetics , Proteobacteria/genetics , Evolution, Molecular , Geologic Sediments/microbiology , Metabolic Networks and Pathways , Metagenomics , Phylogeny , Proteobacteria/classification , Proteobacteria/metabolism , Seawater/microbiology
6.
Environ Microbiol ; 23(7): 4054-4073, 2021 07.
Article in English | MEDLINE | ID: mdl-34245102

ABSTRACT

Active volcanoes in Antarctica have remarkable temperature and geochemical gradients that could select for a wide variety of microbial adaptive mechanisms and metabolic pathways. Deception Island is a stratovolcano flooded by the sea, resulting in contrasting ecosystems such as permanent glaciers and active fumaroles, which creates steep gradients that have been shown to affect microbial diversity. In this study, we used shotgun metagenomics and metagenome-assembled genomes to explore the metabolic potentials and survival strategies of microbial communities along an extreme temperature gradient in fumarole and glacier sediments on Deception Island. We observed that communities from a 98 °C fumarole were significantly enriched in genes related to hyperthermophilic (e.g. reverse gyrase, GroEL/GroES and thermosome) and oxidative stress responses, as well as genes related to sulfate reduction, ammonification and carbon fixation. Communities from <80 °C fumaroles possessed more genes related osmotic, cold- and heat-shock responses, and diverse metabolic potentials, such as those related to sulfur oxidation and denitrification, while glacier communities showed abundant metabolic potentials mainly related to heterotrophy. Through the reconstruction of genomes, we were able to reveal the metabolic potentials and different survival strategies of underrepresented taxonomic groups, especially those related to Nanoarchaeota, Pyrodictiaceae and thermophilic ammonia-oxidizing archaeal lineages.


Subject(s)
Bacteria , Microbiota , Antarctic Regions , Archaea/genetics , Bacteria/genetics , Microbiota/genetics , Temperature
7.
Braz J Microbiol ; 52(3): 1397-1404, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33852152

ABSTRACT

Planctomycetes are bacteria found in several environments, such as mangroves. In the coastline of the State of Sao Paulo (Brazilian Southeast), mangroves occur in different stages of environmental contamination, promoted by the proximity to the city and industrial activities. One of these mangroves (located in the city of Bertioga) is characterized by the high impact due to past petroleum and ongoing urban contamination. We isolated five bacteria affiliated to Planctomycetes from this mangrove and further subjected them to phenotypical and genetic analysis. The tolerance for salinity was demonstrated by the cultivation under distinct concentrations of NaCl. The ability of this bacterium to use diverse carbon sources was revealed by the use of 30 C-sources from a total of 31 tests. We found the isolate Rhodopirellula sp. MGV very closely affiliated to species of the genus Rhodopirellula, harboring a genome with 7.16 Mbp and 55.3% of GC. The annotation of the 77 contigs resulted in 6.284 CDS, with a remarkable occurrence of sequences associated with aromatic carbon metabolism. In conclusion, we present the isolation and characterization of a Planctomycetes from mangroves, suggesting its participation in the degradation of hydrocarbons present in the contaminated mangroves studied.


Subject(s)
Hydrocarbons , Planctomycetales , Water Pollution, Chemical , Bacteria , Brazil , Carbon , Genomics , Hydrocarbons/metabolism , Phylogeny , Planctomycetales/genetics , Planctomycetales/metabolism , Wetlands
8.
Trends Microbiol ; 29(4): 279-282, 2021 04.
Article in English | MEDLINE | ID: mdl-33551270

ABSTRACT

Despite several efforts to unravel the microbial diversity of soil, most microbes are still unknown. A recent large-scale effort based on genome-resolved metagenomics by Nayfach et al. has demonstrated how this approach can expand our understanding of novel bacterial lineages, including those from soils. Genomic catalogs of soil microbiomes are now enabling a deeper investigation of the evolutionary and functional role of high-complex soil microbiomes, promoting new knowledge from the reuse and sharing of multi-omics data.


Subject(s)
Bacteria/genetics , Genetic Variation , Genome, Bacterial , Metagenomics/methods , Soil Microbiology
9.
FEMS Microbiol Ecol ; 96(3)2020 03 01.
Article in English | MEDLINE | ID: mdl-32053145

ABSTRACT

This study was carried out to evaluate the effects of tannin supplementation on ruminal microbiota of sixteen lambs infected and non-infected with Haemonchus contortus and Trichostrongylus colubriformis. Animals were fed with hay, concentrate and supplemented with Acacia mearnsii (A. mearnsii). The animals were divided into four treatments: two control groups without infection, either receiving A. mearnsii (C+) or not (C-), and two infected groups, one with A. mearnsii (I+) and another without A. mearnsii (I-). Ruminal short-chain fatty acids (SCFA) and metagenome sequencing of ruminal microbiota were used to evaluate the effect of tannin and infection on ruminal microbiome. For SCFA, differences were observed only with A. mearnsii. Total SCFA and acetate molar percentage were decreased in C+ and I+ (P<0.05). Butyrate, valerate and isovalerate were higher in lambs that received A. mearnsii in the diet (P<0.05). The infection changed the microbiome structure and decreased the abundance of butyrate-producing microorganisms. In addition, A. mearnsii supplementation also affected the structure the microbial community, increasing the diversity and abundance of the butyrate-producing and probiotics bacteria, amino acid metabolic pathways, purine, pyrimidine and sphingolipid metabolism. Together, our findings indicate that A. mearnsii supplementation modulates important groups related to nitrogen, amino acid, purine and pyrimidine metabolism, in rumen microbiome, affected by gastrointestinal nematodes infection in lambs.


Subject(s)
Microbiota , Nematoda , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements , Fermentation , Rumen/metabolism , Sheep , Tannins/metabolism
10.
Sci Rep ; 9(1): 7347, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31089146

ABSTRACT

Application of composted tannery sludge (CTS) could promote a shift in the structure of soil microbial communities. Although the effect of CTS on bacterial community has been studied, it is unclear how the composition and diversity of archaeal community respond to CTS amendment and which environmental factors drive the community over time. Here, we hypothesize that the Archaea structure and composition respond to CTS amendment over the time. CTS had been previously applied annually along 6 years and this assessment occurred for 180 days following the application in the 7th year by using different rates (0, 2.5, 5, 10 and 20 ton ha-1). We used amplicon 16S rRNA sequencing to assess the changes in the structure of the archaeal community. Thaumarchaeota and Euryarchaeota were the most abundant phyla found in soils with application of CTS, with Thaumarchaeota dominating the sequences in all samples with relative abundances of >98%. We observed a decreasing trend on the archaeal diversity over the time with increasing CTS application rate, together with an increase in the community similarity. The redundancy analyses (RDA) explained 43% of the total variation in operational taxonomic units and identified Na, pH, Cr and P as the main drivers of the archaeal community over time after application of highest CTS rates. CTS application changes the structure of Archaea community, with significant increase of Thaumarchaeota and Aenigmarchaeota groups, which can be further explored for its biotechnological use in contaminated soils.


Subject(s)
Composting , Sewage/chemistry , Soil Microbiology , Archaea/genetics , Archaea/isolation & purification , RNA, Ribosomal, 16S/genetics
11.
Commun Biol ; 1: 135, 2018.
Article in English | MEDLINE | ID: mdl-30272014

ABSTRACT

Biodiversity underlies ecosystem functioning. While aboveground biodiversity is often well studied, the belowground microbiome, in particular protists, remains largely unknown. Indeed, holistic insights into soil microbiome structures in natural soils, especially in hyperdiverse biomes such as the Brazilian Cerrado, remain unexplored. Here, we study the soil microbiome across four major vegetation zones of the Cerrado, ranging from grass-dominated to tree-dominated vegetation with a focus on protists. We show that protist taxon richness increases towards the tree-dominated climax vegetation. Early successional habitats consisting of primary grass vegetation host most potential plant pathogens and least animal parasites. Using network analyses combining protist with prokaryotic and fungal sequences, we show that microbiome complexity increases towards climax vegetation. Together, this suggests that protists are key microbiome components and that vegetation succession towards climax vegetation is stimulated by higher loads of animal and plant pathogens. At the same time, an increase in microbiome complexity towards climax vegetation might enhance system stability.

12.
Sci Rep ; 6: 38915, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27941956

ABSTRACT

Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology.


Subject(s)
Composting , Microbial Consortia , Soil Microbiology , Bacteria/genetics , Biodegradation, Environmental , Biomass , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Lignin/metabolism , Metagenomics , RNA, Ribosomal, 16S/genetics
13.
Genom Data ; 10: 167-168, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27896070

ABSTRACT

The Anthropogenic Amazon Dark Earth soil is considered one of the world's most fertile soils. These soils differs from conventional Amazon soils because its higher organic content concentration. Here we describe the metagenome sequencing of microbial communities of two sites of Anthropogenic Amazon Dark Earth soils from Amazon Rainforest, Brazil. The raw sequence data are stored under Short Read Accession number: PRJNA344917.

14.
Parasitology ; 140(10): 1304-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23863082

ABSTRACT

Angiostrongylus cantonensis is a parasitic nematode of rodents and a leading aetiological agent of eosinophilic meningitis in humans. Definitive diagnosis is difficult, often relying on immunodiagnostic methods which utilize crude antigens. New immunodiagnostic methods based on recombinant proteins are being developed, and ideally these methods would be made available worldwide. Identification of diagnostic targets, as well as studies on the biology of the parasite, are limited by a lack of molecular information on Angiostrongylus spp. available in databases. In this study we present data collected from DNA random high-throughput sequencing together with proteomic analyses and a cDNA walking methodology to identify and obtain the nucleotide or amino acid sequences of unknown immunoreactive proteins. 28 080 putative ORFs were obtained, of which 3371 had homology to other deposited protein sequences. Using the A. cantonensis genomic sequences, 156 putative ORFs, matching peptide sequences obtained from previous proteomic studies, were considered novel, with no homology to existing sequences. Full-length coding sequences of eight antigenic target proteins were obtained. In this study we generated not only the complete nucleotide sequences of the antigenic protein targets but also a large amount of genomic data which may help facilitate future genomic, proteomic, transcriptomic or metabolomic studies on Angiostrongylus.


Subject(s)
Angiostrongylus cantonensis/genetics , Genome, Helminth/genetics , Strongylida Infections/parasitology , Angiostrongylus cantonensis/immunology , Animals , Helminth Proteins/genetics , High-Throughput Nucleotide Sequencing , Proteomics , Strongylida Infections/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...