Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Sci Data ; 7(1): 102, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32218449

ABSTRACT

Time-lapse cameras facilitate remote and high-resolution monitoring of wild animal and plant communities, but the image data produced require further processing to be useful. Here we publish pipelines to process raw time-lapse imagery, resulting in count data (number of penguins per image) and 'nearest neighbour distance' measurements. The latter provide useful summaries of colony spatial structure (which can indicate phenological stage) and can be used to detect movement - metrics which could be valuable for a number of different monitoring scenarios, including image capture during aerial surveys. We present two alternative pathways for producing counts: (1) via the Zooniverse citizen science project Penguin Watch and (2) via a computer vision algorithm (Pengbot), and share a comparison of citizen science-, machine learning-, and expert- derived counts. We provide example files for 14 Penguin Watch cameras, generated from 63,070 raw images annotated by 50,445 volunteers. We encourage the use of this large open-source dataset, and the associated processing methodologies, for both ecological studies and continued machine learning and computer vision development.


Subject(s)
Citizen Science , Image Processing, Computer-Assisted , Machine Learning , Time-Lapse Imaging , Algorithms , Animals , Spheniscidae
2.
PLoS Comput Biol ; 15(5): e1007012, 2019 05.
Article in English | MEDLINE | ID: mdl-31083649

ABSTRACT

Neuronal synapses transmit electrochemical signals between cells through the coordinated action of presynaptic vesicles, ion channels, scaffolding and adapter proteins, and membrane receptors. In situ structural characterization of numerous synaptic proteins simultaneously through multiplexed imaging facilitates a bottom-up approach to synapse classification and phenotypic description. Objective automation of efficient and reliable synapse detection within these datasets is essential for the high-throughput investigation of synaptic features. Convolutional neural networks can solve this generalized problem of synapse detection, however, these architectures require large numbers of training examples to optimize their thousands of parameters. We propose DoGNet, a neural network architecture that closes the gap between classical computer vision blob detectors, such as Difference of Gaussians (DoG) filters, and modern convolutional networks. DoGNet is optimized to analyze highly multiplexed microscopy data. Its small number of training parameters allows DoGNet to be trained with few examples, which facilitates its application to new datasets without overfitting. We evaluate the method on multiplexed fluorescence imaging data from both primary mouse neuronal cultures and mouse cortex tissue slices. We show that DoGNet outperforms convolutional networks with a low-to-moderate number of training examples, and DoGNet is efficiently transferred between datasets collected from separate research groups. DoGNet synapse localizations can then be used to guide the segmentation of individual synaptic protein locations and spatial extents, revealing their spatial organization and relative abundances within individual synapses. The source code is publicly available: https://github.com/kulikovv/dognet.


Subject(s)
Models, Neurological , Neural Networks, Computer , Synapses/physiology , Synapses/ultrastructure , Animals , Cerebral Cortex/physiology , Cerebral Cortex/ultrastructure , Computational Biology , Computer Simulation , Databases, Factual , Image Processing, Computer-Assisted/statistics & numerical data , Mice , Microscopy, Fluorescence, Multiphoton/methods , Microscopy, Fluorescence, Multiphoton/statistics & numerical data , Nerve Tissue Proteins/metabolism , Neurons/physiology , Neurons/ultrastructure , Software , Synaptic Transmission/physiology
3.
Sci Adv ; 4(4): eaar4004, 2018 04.
Article in English | MEDLINE | ID: mdl-29662954

ABSTRACT

The crystallization of solidifying Al-Cu alloys over a wide range of conditions was studied in situ by synchrotron x-ray radiography, and the data were analyzed using a computer vision algorithm trained using machine learning. The effect of cooling rate and solute concentration on nucleation undercooling, crystal formation rate, and crystal growth rate was measured automatically for thousands of separate crystals, which was impossible to achieve manually. Nucleation undercooling distributions confirmed the efficiency of extrinsic grain refiners and gave support to the widely assumed free growth model of heterogeneous nucleation. We show that crystallization occurred in temporal and spatial bursts associated with a solute-suppressed nucleation zone.

4.
IEEE Trans Pattern Anal Mach Intell ; 40(11): 2696-2710, 2018 11.
Article in English | MEDLINE | ID: mdl-28809672

ABSTRACT

We propose a general approach to the gaze redirection problem in images that utilizes machine learning. The idea is to learn to re-synthesize images by training on pairs of images with known disparities between gaze directions. We show that such learning-based re-synthesis can achieve convincing gaze redirection based on monocular input, and that the learned systems generalize well to people and imaging conditions unseen during training. We describe and compare three instantiations of our idea. The first system is based on efficient decision forest predictors and redirects the gaze by a fixed angle in real-time (on a single CPU), being particularly suitable for the videoconferencing gaze correction. The second system is based on a deep architecture and allows gaze redirection by a range of angles. The second system achieves higher photorealism, while being several times slower. The third system is based on real-time decision forests at test time, while using the supervision from a "teacher" deep network during training. The third system approaches the quality of a teacher network in our experiments, and thus provides a highly realistic real-time monocular solution to the gaze correction problem. We present in-depth assessment and comparisons of the proposed systems based on quantitative measurements and a user study.


Subject(s)
Fixation, Ocular , Image Processing, Computer-Assisted/methods , Machine Learning , Databases, Factual , Decision Trees , Deep Learning , Eye Movements , Face/anatomy & histology , Facial Expression , Female , Humans , Male , Neural Networks, Computer , Videoconferencing
5.
Med Image Anal ; 27: 3-16, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25980675

ABSTRACT

In many microscopy applications the images may contain both regions of low and high cell densities corresponding to different tissues or colonies at different stages of growth. This poses a challenge to most previously developed automated cell detection and counting methods, which are designed to handle either the low-density scenario (through cell detection) or the high-density scenario (through density estimation or texture analysis). The objective of this work is to detect all the instances of an object of interest in microscopy images. The instances may be partially overlapping and clustered. To this end we introduce a tree-structured discrete graphical model that is used to select and label a set of non-overlapping regions in the image by a global optimization of a classification score. Each region is labeled with the number of instances it contains - for example regions can be selected that contain two or three object instances, by defining separate classes for tuples of objects in the detection process. We show that this formulation can be learned within the structured output SVM framework and that the inference in such a model can be accomplished using dynamic programming on a tree structured region graph. Furthermore, the learning only requires weak annotations - a dot on each instance. The candidate regions for the selection are obtained as extremal region of a surface computed from the microscopy image, and we show that the performance of the model can be improved by considering a proxy problem for learning the surface that allows better selection of the extremal regions. Furthermore, we consider a number of variations for the loss function used in the structured output learning. The model is applied and evaluated over six quite disparate data sets of images covering: fluorescence microscopy, weak-fluorescence molecular images, phase contrast microscopy and histopathology images, and is shown to exceed the state of the art in performance.


Subject(s)
Cell Count/methods , Cell Tracking/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Microscopy/methods , Pattern Recognition, Automated/methods , Algorithms , Animals , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted , Subtraction Technique
6.
IEEE Trans Pattern Anal Mach Intell ; 37(6): 1247-60, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26357346

ABSTRACT

A new data structure for efficient similarity search in very large datasets of high-dimensional vectors is introduced. This structure called the inverted multi-index generalizes the inverted index idea by replacing the standard quantization within inverted indices with product quantization. For very similar retrieval complexity and pre-processing time, inverted multi-indices achieve a much denser subdivision of the search space compared to inverted indices, while retaining their memory efficiency. Our experiments with large datasets of SIFT and GIST vectors demonstrate that because of the denser subdivision, inverted multi-indices are able to return much shorter candidate lists with higher recall. Augmented with a suitable reranking procedure, multi-indices were able to significantly improve the speed of approximate nearest neighbor search on the dataset of 1 billion SIFT vectors compared to the best previously published systems, while achieving better recall and incurring only few percent of memory overhead.

7.
Article in English | MEDLINE | ID: mdl-26276958

ABSTRACT

We propose a new method for strain field estimation in quasi-static ultrasound elastography based on matching RF data frames of compressed tissues. The method benefits from using a handheld force-controlled ultrasound probe, which provides the contact force magnitude and therefore improves repeatability of displacement field estimation. The displacement field is estimated in a two-phase manner using triplets of RF data frames consisting of a pre-compression image and two post-compression images obtained with lower and higher compression ratios. First, a reliable displacement field estimate is calculated for the first post-compression frame. Second, we use this displacement estimate to warp the second post-compression frame while using linear elasticity to obtain an initial approximation. Final displacement estimation is refined using the warped image. The two-phase displacement estimation allows for higher compression ratios, thus increasing the practical resolution of the strain estimates. The strain field is computed from a displacement field using a smoothness- regularized energy functional, which takes into consideration local displacement estimation quality. The minimization is performed using an efficient primal-dual hybrid gradient algorithm, which can leverage the architecture of a graphical processing unit. The method is quantitatively evaluated using finite element simulations. We compute strain estimates for tissue-mimicking phantoms with known elastic properties and finally perform a qualitative validation using in vivo patient data.


Subject(s)
Algorithms , Elasticity Imaging Techniques/methods , Humans , Image Processing, Computer-Assisted , Liver/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Phantoms, Imaging , Reproducibility of Results
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 5541-4, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26737547

ABSTRACT

Over the past decade, substantial effort has been directed toward developing ultrasonic systems for medical imaging. With advances in computational power, previously theorized scanning methods such as ultrasound tomography can now be realized. In this paper, we present the design, error analysis, and initial backprojection images from a single element 3D ultrasound tomography system. The system enables volumetric pulse-echo or transmission imaging of distal limbs. The motivating clinical applications include: improving prosthetic fittings, monitoring bone density, and characterizing muscle health. The system is designed as a flexible mechanical platform for iterative development of algorithms targeting imaging of soft tissue and bone. The mechanical system independently controls movement of two single element ultrasound transducers in a cylindrical water tank. Each transducer can independently circle about the center of the tank as well as move vertically in depth. High resolution positioning feedback (~1µm) and control enables flexible positioning of the transmitter and the receiver around the cylindrical tank; exchangeable transducers enable algorithm testing with varying transducer frequencies and beam geometries. High speed data acquisition (DAQ) through a dedicated National Instrument PXI setup streams digitized data directly to the host PC. System positioning error has been quantified and is within limits for the imaging requirements of the motivating applications.


Subject(s)
Ultrasonography , Algorithms , Equipment Design , Phantoms, Imaging , Tomography , Transducers
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 7204-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26737954

ABSTRACT

Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and repeatable process has not been fully demonstrated. Medical ultrasonography, which has significant potential to expand its clinical applications, is being pursued to acquire data that may quantify and improve the design process and fabrication of prosthetic sockets. This paper presents a new multi-modal imaging approach for acquiring volumetric images of a human limb, specifically focusing on how motion of the limb is compensated for using optical imagery.


Subject(s)
Amputation Stumps/diagnostic imaging , Artificial Limbs , Humans , Motion , Multimodal Imaging , Tomography , Ultrasonography
10.
IEEE Trans Pattern Anal Mach Intell ; 34(9): 1773-84, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22450818

ABSTRACT

Hough transform-based methods for detecting multiple objects use nonmaxima suppression or mode seeking to locate and distinguish peaks in Hough images. Such postprocessing requires the tuning of many parameters and is often fragile, especially when objects are located spatially close to each other. In this paper, we develop a new probabilistic framework for object detection which is related to the Hough transform. It shares the simplicity and wide applicability of the Hough transform but, at the same time, bypasses the problem of multiple peak identification in Hough images and permits detection of multiple objects without invoking nonmaximum suppression heuristics. Our experiments demonstrate that this method results in a significant improvement in detection accuracy both for the classical task of straight line detection and for a more modern category-level (pedestrian) detection problem.


Subject(s)
Algorithms , Artificial Intelligence , Image Processing, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Humans , Walking
11.
Med Image Comput Comput Assist Interv ; 15(Pt 1): 348-56, 2012.
Article in English | MEDLINE | ID: mdl-23285570

ABSTRACT

Cell detection in microscopy images is an important step in the automation of cell based-experiments. We propose a machine learning-based cell detection method applicable to different modalities. The method consists of three steps: first, a set of candidate cell-like regions is identified. Then, each candidate region is evaluated using a statistical model of the cell appearance. Finally, dynamic programming picks a set of non-overlapping regions that match the model. The cell model requires few images with simple dot annotation for training and can be learned within a structured SVM framework. In the reported experiments, state-of-the-art cell detection accuracy is achieved for H&E stained histology, fluorescence, and phase-contrast images.


Subject(s)
Artificial Intelligence , Image Processing, Computer-Assisted/methods , Microscopy, Phase-Contrast/methods , Algorithms , Cell Size , Computer Simulation , HeLa Cells , Humans , Microscopy/methods , Models, Statistical , Pattern Recognition, Automated/methods , Reproducibility of Results , Software , Support Vector Machine
12.
IEEE Trans Pattern Anal Mach Intell ; 33(11): 2188-202, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21464503

ABSTRACT

Abstract­The paper introduces Hough forests, which are random forests adapted to perform a generalized Hough transform in an efficient way. Compared to previous Hough-based systems such as implicit shape models, Hough forests improve the performance of the generalized Hough transform for object detection on a categorical level. At the same time, their flexibility permits extensions of the Hough transform to new domains such as object tracking and action recognition. Hough forests can be regarded as task-adapted codebooks of local appearance that allow fast supervised training and fast matching at test time. They achieve high detection accuracy since the entries of such codebooks are optimized to cast Hough votes with small variance and since their efficiency permits dense sampling of local image patches or video cuboids during detection. The efficacy of Hough forests for a set of computer vision tasks is validated through experiments on a large set of publicly available benchmark data sets and comparisons with the state-of-the-art.

13.
IEEE Trans Pattern Anal Mach Intell ; 32(8): 1392-405, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20558873

ABSTRACT

The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we demonstrate one possible way of achieving this by using graph cuts to combine pairs of suboptimal labelings or solutions. We call this combination process the fusion move. By employing recently developed graph-cut-based algorithms (so-called QPBO-graph cut), the fusion move can efficiently combine two proposal labelings in a theoretically sound way, which is in practice often globally optimal. We demonstrate that fusion moves generalize many previous graph-cut approaches, which allows them to be used as building blocks within a broader variety of optimization schemes than were considered before. In particular, we propose new optimization schemes for computer vision MRFs with applications to image restoration, stereo, and optical flow, among others. Within these schemes the fusion moves are used 1) for the parallelization of MRF optimization into several threads, 2) for fast MRF optimization by combining cheap-to-compute solutions, and 3) for the optimization of highly nonconvex continuous-labeled MRFs with 2D labels. Our final example is a nonvision MRF concerned with cartographic label placement, where fusion moves can be used to improve the performance of a standard inference method (loopy belief propagation).

SELECTION OF CITATIONS
SEARCH DETAIL
...