Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1388775, 2024.
Article in English | MEDLINE | ID: mdl-38779073

ABSTRACT

Introduction: Given their remarkable capacity to convert atmospheric nitrogen into plant-accessible ammonia, nitrogen-fixing microbial species hold promise as a sustainable alternative to chemical nitrogen fertilizers, particularly in economically significant crops like wheat. This study aimed to identify strains with optimal attributes for promoting wheat growth sustainably, with a primary emphasis on reducing reliance on chemical nitrogen fertilizers. Methods: We isolated free nitrogen-fixing strains from diverse rhizospheric soils across Morocco. Subsequently, we conducted a rigorous screening process to evaluate their plant growth-promoting traits, including nitrogen fixation, phosphate solubilization, phytohormone production and their ability to enhance wheat plant growth under controlled conditions. Two specific strains, Rhodotorula mucilaginosa NF 516 and Arthrobacter sp. NF 528, were selected for in-depth evaluation, with the focus on their ability to reduce the need for chemical nitrogen supply, particularly when used in conjunction with TSP fertilizer and natural rock phosphate. These two sources of phosphate were chosen to assess their agricultural effectiveness on wheat plants. Results and discussion: Twenty-two nitrogen-fixing strains (nif-H+) were isolated from various Moroccan rhizospheric soils, representing Bacillus sp., Pseudomonas sp., Arthrobacter sp., Burkholderia sp. and a yeast-like microorganism. These strains were carefully selected based on their potential to promote plant growth. The findings revealed that the application of Rhodotorula mucilaginosa NF 516 and Arthrobacter sp. NF 528 individually or in combination, significantly improved wheat plant growth and enhanced nutrients (N and P) uptake under reduced nitrogen regimes. Notably, their effectiveness was evident in response to both natural rock phosphate and TSP, demonstrating their important role in wheat production under conditions of low nitrogen and complex phosphorus inputs. This research underscores the significant role of nitrogen-fixing microorganisms, particularly Rhodotorula mucilaginosa NF 516 and Arthrobacter sp. NF 528, in wheat production under conditions of low nitrogen and complex phosphorus inputs. It showcases their potential to reduce chemical nitrogen fertilization requirements by up to 50% without compromising wheat plant yields. Our study emphasizes the importance of bacterial biological nitrogen fixation in meeting the remaining nitrogen requirements beyond this reduction. This underscores the vital role of microbial contributions in providing essential nitrogen for optimal plant growth and highlights the significance of biological nitrogen fixation in sustainable agriculture practices.

2.
Vaccines (Basel) ; 11(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36992173

ABSTRACT

SARS-CoV-2 has caused a huge pandemic affecting millions of people and resulting innumerous deaths. A better understanding of the correlation between binding antibodies and neutralizing antibodies is necessary to address protective immunity post-infection or vaccination. Here, we investigate the humoral immune response and the seroprevalence of neutralizing antibodies following vaccination with adenovirus-based vector in 177 serum samples. A Microneutralization (MN) assay was used as a reference method to assess whether neutralizing antibody titers correlated with a positive signal in two commercially available serological tests:a rapid lateral flow immune-chromatographic assay (LFIA) and an enzyme-linked Fluorescence Assay (ELFA). Neutralizing antibodies were detected in most serum samples (84%). COVID-19 convalescent individuals showed high antibody titers and significant neutralizing activity. Spearman correlation coefficients between the serological and neutralization results ranged from 0.8 to 0.9, suggesting a moderate to strong correlation between commercial immunoassays test results (LFIA and ELFA) and virus neutralization.

3.
J Microbiol Methods ; 204: 106659, 2023 01.
Article in English | MEDLINE | ID: mdl-36529157

ABSTRACT

The water is used in many textile manufacturing steps beyond cleaning. The quantity and the significant chemical load of the effluents generated constitute the primary challenge of the textile industry. In order to discover new sustainable methods to overcome this problem, the aim of this research was to study the potential for degradation of Reactive Blue 214, Reactive Red 195, and Reactive Yellow 145 using a dye degrading bacterium. Sequencing analysis reveals it to be Klebsiella pneumoniae MW815592. This strain completely decolorized artificial effluent (200 mg/L) after 42 h at pH 9 and 46 °C. The decolorization rate increased in the presence of glucose and yeast extract (2 g). In addition, our finding revealed that the decolorization is due to biodegradation rather than adsorption on the bacterial surface.


Subject(s)
Coloring Agents , Klebsiella pneumoniae , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Coloring Agents/metabolism , Naphthalenesulfonates , Azo Compounds/metabolism , Textiles , Biodegradation, Environmental
4.
BioTech (Basel) ; 11(3)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35892927

ABSTRACT

Traditional antimicrobial antibiotics are increasingly suffering from the emergence of multidrug resistance among pathogenic microorganisms. The antibiotic era is threatened by the ruthless rise of resistance in bacterial infections. A significant role in these resistance profiles is attributed to multidrug efflux pumps. Hence, much effort is being directed towards developing new compounds to overcome this problem. During our screening program of efflux pumps inhibitors (EPI) produced by bioactive Moroccan Actinobacteria, 210 isolates were screened for their antibacterial activities against Escherichia coli strains containing a system of efflux pump AcrAB-TolC, fully functional, and its mutant, inactivated due to the insertion of transposon Tn903 in AcrAB operon, using the method of agar disc diffusion. The results showed that 14 isolates were able to produce EPI as they were active against the wild type strain but not against the mutant in comparison with the synthetic inhibitor L-Phe-L-Arg-ß-naphthylamide (PaßN). We focused on the highest EPI activity produced by four strains (Z332, Z35/G, Z385/b and 136). Taxonomic studies and the 16S rDNA sequence indicated that these strains belonged to the Streptomyces species. This work could contribute to the discovery of a new class of antibacterial agents that could expand the therapeutic arsenal.

5.
Microorganisms ; 10(6)2022 May 28.
Article in English | MEDLINE | ID: mdl-35744634

ABSTRACT

Soil actinomycetes explorations appear to be an efficient alternative as biofertilizers to optimize the use of phosphorus (P) resources and enhance plant growth. This research aimed to explore the distribution of actinomycetes isolated from four different rhizospheric Moroccan oat soils and to investigate their potential for P solubilization. The distribution of actinomycetes was significantly more abundant in Settat (9.68%), Tangier (7.38%), and Beni Mellal (6.87%) than in the Merchouch-Rabat (4.90%) region. A total of 235 actinomycete strains were isolated from all sites and tested for their ability to grow on a synthetic minimum medium (SMM) containing insoluble natural rock phosphate (RP) or synthetic tricalcium phosphate (TCP) as the unique P source. One hundred forty-three isolates (60.8%) had the ability to grow in the SMM with RP whereas only twenty-five isolates (17%) had the most active growth using the SMM with TCP. Eight isolates with the most active growth in solid SMM were selected for their P solubilization abilities in liquid SMM cultures. The highest amount of P solubilized was 163.8 µg/mL for RP and 110.27 µg/mL for TCP after 5 days of culture. The biosolubilization process of AM2, the most efficient RP and TCP solubilizing strain, probably implied the highest excretion of siderophore substances. Eight of these strains were shown to belong to the Streptomyces genus and one to the Promicromonospora genus. These findings bolster the phosphate biosolubilization abilities of actinomycetes and may participate in increasing agricultural yields in an eco-efficient and environmentally friendly manner.

6.
Microorganisms ; 9(7)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34361865

ABSTRACT

The characterized 10 Streptomyces isolates were previously selected by their abilities to solubilize phosphates. To investigate whether these isolates represent multifaceted plant growth-promoting rhizobacteria (PGPR), their potassium-solubilizing, auxin-producing and inhibitory activities were determined. The 10 Streptomyces spp. yielded a variable biomass in the presence of insoluble orthoclase as the sole potassium (K) source, indicating that they were able to extract different amounts of K from this source for their own growth. Three strains (AZ, AYD and DE2) released soluble K from insoluble orthoclase in large amounts into the culture broth. The production levels ranged from 125.4 mg/L to 216.6 mg/L after 5 days of culture. Only two strains, Streptomyces enissocaesilis (BYC) and S. tunisiensis (AI), released a larger amount of soluble K from orthoclase and yielded much more biomass. This indicated that the rate of K released from this insoluble orthoclase exceeded its consumption rate for bacterial growth and that some strains solubilized K more efficiently than others. The results also suggest that the K solubilization process of AZ, AYD and DE2 strains, the most efficient K-solubilizing strains, involves a slight acidification of the medium. Furthermore, these 10 Streptomyces spp. were able to secrete indole acetic acid (IAA) in broth medium and ranged from 7.9 ± 0.1 µg/mL to 122.3 ± 0.1 µg/mL. The results of the antibiosis test proved the potential of the 10 tested strains to limit the growth of fungi and bacteria. In dual culture, S. bellus (AYD) had highest inhibitory effect against the three identified fungal causal agents of root rot of sugar beet: Fusarium equiseti and two F. fujikuroi at 55, 43 and 36%, respectively. Streptomyces enissocaesilis (BYC), S. bellus (AYD) and S. saprophyticus (DE2) exhibited higher multifaceted PGPR with their potassium-solubilizing, auxin-producing and inhibitory activities, which could be expected to lead to effectiveness in field trials of sugar beet.

7.
Microorganisms ; 9(5)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923283

ABSTRACT

In the course of our research, aimed at improving sugar beets phosphorus nutrition, we isolated and characterized Streptomyces sp. strains, endemic from sugar beet fields of the Beni-Mellal region, which are able to use natural rock phosphate (RP) and tricalcium phosphate (TCP) as sole phosphate sources. Ten Streptomyces sp. isolates yielded a comparable biomass in the presence of these two insoluble phosphate sources, indicating that they were able to extract similar amount of phosphorus (P) from the latter for their own growth. Interestingly, five strains released soluble P in large excess from TCP in their culture broth whereas only two strains, BP, related to Streptomyces bellus and BYC, related to Streptomyces enissocaesilis, released a higher or similar amount of soluble P from RP than from TCP, respectively. This indicated that the rate of P released from these insoluble phosphate sources exceeded its consumption rate for bacterial growth and that most strains solubilized TCP more efficiently than RP. Preliminary results suggested that the solubilization process of BYC, the most efficient RP and TCP solubilizing strain, involves both acidification of the medium and excretion of siderophores. Actinomycete strains possessing such interesting RP solubilizing abilities may constitute a novel kind of fertilizers beneficial for plant nutrition and more environmentally friendly than chemical fertilizers in current use.

8.
Microbiol Resour Announc ; 9(27)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32616647

ABSTRACT

Here, we report a complete genome sequence obtained for a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain isolated from a nasopharyngeal swab specimen of a Moroccan patient with coronavirus disease 2019 (COVID-19).

9.
Front Microbiol ; 7: 1991, 2016.
Article in English | MEDLINE | ID: mdl-28018320

ABSTRACT

The multi-resistant Staphylococcus capitis clone NRCS-A has recently been described as a major pathogen causing nosocomial, late-onset sepsis (LOS) in preterm neonates worldwide. NRCS-A representatives exhibit an atypical antibiotic resistance profile. Here, the complete closed genome (chromosomal and plasmid sequences) of NRCS-A prototype strain CR01 and the draft genomes of three other clinical NRCS-A strains from Australia, Belgium and the United Kingdom are annotated and compared to available non-NRCS-A S. capitis genomes. Our goal was to delineate the uniqueness of the NRCS-A clone with respect to antibiotic resistance, virulence factors and mobile genetic elements. We identified 6 antimicrobial resistance genes, all carried by mobile genetic elements. Previously described virulence genes present in the NRCS-A genomes are shared with the six non-NRCS-A S. capitis genomes. Overall, 63 genes are specific to the NRCS-A lineage, including 28 genes located in the methicillin-resistance cassette SCCmec. Among the 35 remaining genes, 25 are of unknown function, and 9 correspond to an additional type I restriction modification system (n = 3), a cytosine methylation operon (n = 2), and a cluster of genes related to the biosynthesis of teichoic acids (n = 4). Interestingly, a tenth gene corresponds to a resistance determinant for nisin (nsr gene), a bacteriocin secreted by potential NRCS-A strain niche competitors in the gut microbiota. The genomic characteristics presented here emphasize the contribution of mobile genetic elements to the emergence of multidrug resistance in the S. capitis NRCS-A clone. No NRCS-A-specific known virulence determinant was detected, which does not support a role for virulence as a driving force of NRCS-A emergence in NICUs worldwide. However, the presence of a nisin resistance determinant on the NRCS-A chromosome, but not in other S. capitis strains and most coagulase-negative representatives, might confer a competitive advantage to NRCS-A strains during the early steps of gut colonization in neonates. This suggests that the striking adaptation of NRCS-A to the NICU environment might be related to its specific antimicrobial resistance and also to a possible enhanced ability to challenge competing bacteria in its ecological niche.

10.
Mycoses ; 49(3): 169-75, 2006 May.
Article in English | MEDLINE | ID: mdl-16681806

ABSTRACT

2-Benzenesulphinyl-(1,4)-naphtoquinone and 14 derivatives were synthesised and were used to evaluate their cytotoxicity against a human myelomonocyte cell line and their antifungal activity against two yeast, i.e. Candida albicans and C. tropicalis and against two filamentous fungi such as Aspergillus niger and Fusarium oxysporum and against one dermatophyte, namely Trichophyton tonsurans. The cytotoxicity and antifungal activities were investigated in comparison with amphotericin B as reference drug. No compound was significantly more toxic than amphotericin B at 0.2 microg ml(-1). The best results of antifungal activity were obtained with GFL 10, GFL 13 and GFL 30 on C. tropicalis, F. oxysporum and T. tonsurans. For C. albicans and A. niger, there was no difference between amphotericin B and the other molecules. The sterol quantitation, the time-kill curves were carried out for these three compounds in order to confirm their action in ergosterol synthesis. Time-kill curves showed a fungistatic activity. For C. tropicalis GFL 10, GFL 13 and GFL 30 increased the growth delay better than amphotericin B, in contrast to F. oxysporum. As for T. tonsurans, GFL10 and GFL13 gave a delay, but the effect of GFL 30 was a bit less marked.


Subject(s)
Antifungal Agents/pharmacology , Disulfides/chemical synthesis , Disulfides/pharmacology , Fungi/drug effects , Naphthoquinones/chemical synthesis , Naphthoquinones/pharmacology , Amphotericin B/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/toxicity , Cell Line , Disulfides/chemistry , Fungi/classification , Humans , Microbial Sensitivity Tests , Monocytes , Naphthoquinones/chemistry
11.
Int J Syst Evol Microbiol ; 54(Pt 6): 2061-2065, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15545435

ABSTRACT

The taxonomic position of an actinomycete isolated from an ultramafic soil in New Caledonia was determined using a polyphasic approach. The isolate, which was designated SFOp68(T), was shown to have chemical and morphological properties typical of streptomycetes. An almost complete 16S rRNA gene sequence of the isolate was generated and compared with sequences of representative streptomycetes. The 16S rRNA data not only supported the classification of the strain in the genus Streptomyces, but also showed that it formed a distinct phyletic line that was most closely related to one composed of the type strain of Streptomyces rimosus. The two organisms can be readily separated using a diverse range of phenotypic properties. It is proposed that strain SFOp68(T) (=DSM 41836(T)=NCIMB 13954(T)) be classified in the genus Streptomyces as Streptomyces ferralitis sp. nov.


Subject(s)
Soil Microbiology , Streptomyces/classification , Streptomyces/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , DNA, Ribosomal/chemistry , DNA, Ribosomal/isolation & purification , Genes, rRNA , Molecular Sequence Data , New Caledonia , Phenotype , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Streptomyces/cytology , Streptomyces/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...